Return to search

Mobile Electronic Dispensary System

The Mobile Electronic Dispensary System (MEDS) is an indoor medical dispensary system where robots locate and travel to patients within a grid in order to deliver medication or other medical supplies based on a predefined schedule. For older people or individuals with physical or mental disabilities, it is important to ensure that medications are taken as prescribed. Missing or mixing dosages can cause unwanted and even harmful consequences. As individuals grow older or battle disabilities, it is expected that adhering to their medicine regimen will be a daily challenge without the assistance of a fulltime caregiver. Therefore, to assist individuals in maintaining their independence, MEDS ensures the proper medicine is dispensed to the patient at the prescribed time and dosage. At the core of MEDS is a scheduler that maintains the medicines to be dispensed, including the times and dosages. Once a scheduled time arrives to deliver medicine to a patient, MEDS instructs the appropriate robot to wake up, locate the patient within a defined grid, and then travel to the patient and deliver the medicine. Upon receiving the delivery, the patient will accept the medicine physically and then update their mobile device, informing MEDS that the medicine was successfully delivered. At this time, the robot will return to its home base within the grid. The patients are within the confines of a building where GPS is not a viable solution to track items to pinpoint accuracy. Therefore, an indoor location based system with beacons and listeners are required in order to define a grid and enable robots to locate and travel to the patient. This paper defines and details the programs, database, algorithms, and hardware of MEDS using the Cricket Indoor Location System and iRobot Creates. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/19977
Date23 April 2013
CreatorsStokes, Nancy Elizabeth
Source SetsUniversity of Texas
Languageen_US
Detected LanguageEnglish
Formatapplication/pdf

Page generated in 0.0064 seconds