Return to search

Idiopathic pulmonary fibrosis: pathogenesis, progression, treatments, and future prospects

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease of unknown etiology, in which excessive accumulation of scar tissue in the interstitial spaces of the lung obstruct normal pulmonary function. Currently, the only curative treatment is lung transplantation. While pharmaceutical therapeutics have been recently approved for use in IPF in 2014, they are still unable to provide a truly curative treatment. While genetic risk factors have been identified, the most commonly occurring mutation is only detected in approximately 38% of IPF patients, leaving an uncertainty in the very existence of a common genetic factor in IPF. Cigarette smoke and other environmental particulates have been significantly linked to the diagnosis of IPF, implicating an initial immunological response to trigger the pathogenesis of IPF.
Nintedanib, a potent tyrosine kinase receptor inhibitor was first developed in 1998 as a candidate for cancer treatment. Investigation of its effects in fibrosis in the past few decades has led to a significant discovery of its application in IPF. Nintedanib significantly inhibits the fibrotic activity of fibrotic myofibroblasts in the lungs by inhibiting signaling cascades necessary for cell proliferation and progression of the disease. However, nintedanib falls short in that it cannot fully inhibit the advancement of the disease and mortality rates of IPF still remain high.
Pirfenidone, the other currently available pharmaceutical therapeutic, was discovered in 1976 as a potent inhibitor of inflammation. Subsequent experiments further reviled its potency as an anti-fibrotic drug. After decades of research, pirfenidone’s mechanism of antifibrotic characteristics were revealed as a potent inhibitor of fibrocyte recruitment and chemotaxis, and as an inhibitor of transcription growth factor beta (a growth factor heavily implicated in the activity of myofibroblasts) mediated pathways. However, like nintedanib, pirfenidone fails as a curative treatment, only delaying the progression of the disease.
In the search for new molecular targets for pharmaceutical therapy, forkhead box M1 (FOXM1), programmed cell death protein-1 (PD-1), and prostaglandin E2, have been identified to play a mediatory role in many of the pathways involved in myofibroblast activity. Many of these targets have also been identified in other disease models such as cancer and immunological inflammatory disease. Avasimibe has been recently identified as a potent inhibitor of aldo-ketoreductase through a FOXM1 mediated pathway. Its molecular mechanism in osteosarcoma cancer disease model may prove to be a novel pharmaceutical therapeutic for IPF. BI 853250, a novel focal adhesion kinase (FAK) inhibitor also demonstrates potential to be a new pharmaceutical therapeutic for IPF patients. Exploring signaling pathways that involve these newly found targets and collaborative research with cancer and immunological diseases shows promise in providing steps to cure IPF in the future.

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/38685
Date11 October 2019
CreatorsOuchi, Hideyasu
ContributorsMoussavi, Mina, Offner, Gwynneth
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.0036 seconds