<!--st1\:*{behavior:url(#ieooui) } --><!--[endif]--> <!-- /* Font Definitions */ @font-face {font-family:Garamond; panose-1:2 2 4 4 3 3 1 1 8 3; mso-font-charset:0; mso-generic-font-family:roman; mso-font-pitch:variable; mso-font-signature:647 0 0 0 159 0;} /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-parent:""; margin:0cm; margin-bottom:.0001pt; mso-pagination:widow-orphan; mso-layout-grid-align:none; punctuation-wrap:simple; text-autospace:none; font-size:12.0pt; mso-bidi-font-size:10.0pt; font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman"; mso-ansi-language:EN-GB; mso-fareast-language:EN-US;} @page Section1 {size:612.0pt 792.0pt; margin:70.85pt 70.85pt 70.85pt 70.85pt; mso-header-margin:36.0pt; mso-footer-margin:36.0pt; mso-paper-source:0;} div.Section1 {page:Section1;} --> To implement a utility wireless sensor network, investigation of different wireless protocols has been performed. The protocols are Bluetooth, Wi-Fi, IEEE 802.15.4 and Zigbee. Consecutively literature studies have made it comprehensible to understand the function of the protocols that are suitable for development of wireless sensor networks. The importance of low cost, low power, reliable and high-quality properties for long distances are significant. IEEE 802.15.4 and Zigbee protocol are proper to implement as a wireless sensor network. To reduce the human efforts in the configuration of the system, a comfortable method is implemented to facilitate the procedure. The applied method is based on an automatic configuration of the system. The configuration and the decision taking are implemented in the software. The system is designed to avoid interference to other wireless networks with the possibilities of reconfiguration. A uniform hardware and software design with separate functions of the system decided by a subsequent command for configuration is preferable. This imposes an advantage that increases the flexible potential of the system when a uniform solution is implemented. To support the basic communication principles and control of the system, a buffer implementation has been introduced. The functionality of decision taking is distributed, configured by system commands from the host system. Detecting of system commands requires a properly operating buffer management. In consideration to the power consumption in reference to battery utilizations, the settings of RF-module and microcontroller have a powerful impact to reduce the power consumption. All possibilities of hibernates and avoidance of unnecessarily transmitting, should be deactivated to minimize the power consumption.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hj-6545 |
Date | January 2008 |
Creators | Jonsson, Tobias, Acquaye, Gabriel |
Publisher | Tekniska Högskolan, Högskolan i Jönköping, JTH, Data- och elektroteknik, Högskolan i Jönköping, Tekniska Högskolan, Högskolan i Jönköping, JTH, Data- och elektroteknik, Högskolan i Jönköping |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0014 seconds