Survival of patients with poor prognosis or relapsed haematopoietic malignancies can be markedly improved by allogeneic haematopoietic stem cell transplantation (HSCT). HSCT reconstitutes the immune and haematopoietic systems after myeloablative conditioning and inhibits the recurrence of the malignancy by a graft-versus-leukaemia (GVL) response mediated by donor T cells. However, significant post-transplant complications such as graft-versus-host disease (GVHD) continue to plague the event-free survival of this curative procedure. GVHD is facilitated by donor T cells that recognise histocompatibility antigens on host antigen presenting cells (APC), such as dendritic cells (DC). Current treatment options for GVHD are focused on these T cells. However, these treatments result in an increased incidence of infection, graft rejection and relapse. A novel means of immunosuppression in GVHD is the use of multi-potent, mesenchymal stromal cells (MSC). MSC are non-immunogenic cells that actively suppress T cell function in vitro, and can resolve steroid-refractory GVHD in the clinic. Despite their use in the clinic, there is a paucity of pre-clinical data. Our aim was to investigate the in vivo efficacy of MSC to control GVHD while maintaining the beneficial GVL effect, and to begin to understand the mechanism by which MSC exert their immunosuppressive effects. We isolated and characterised MSC from murine bone/bone marrow and demonstrated that they suppressed T cell proliferation in vitro, even at low ratios of 1 MSC per 100 T cells. This was true of both donor-derived MSC, and MSC derived from unrelated donors (third party). Importantly, we observed that MSC significantly reduced T cell production of the pro-inflammatory cytokines TNFα and IFNγ in culture supernatants and that IFNγ plays a key role in the ability of MSC to suppress T cell proliferation. In vivo, we examined the effects of donor-derived MSC on GVHD severity and onset in two myeloablative murine models of HSCT. A major histocompatibility complex (MHC)-mismatched donor-recipient pair combination was used as a proof–of-principle model [UBI-GFP/BL6 (H-2b)àBALB/c (H-2d)], and an MHC-matched, minor histocompatibility antigen (miHA) mismatched donor-recipient pair combination was used to mimic MHC-matched sibling transplantation [UBI-GFP/BL6 (H-2b)àBALB.B (H-2b)]. We examined a number of variables related to MSC infusion including timing, dose and route of injection. We found that early post transplant infusion of MSC by the intraperitoneal injection was most effective at delaying death from GVHD, compared to pre-transplant infusion or intravenous injection. Furthermore, we found that the dose of MSC was critical, as infusion of too few MSC was ineffective and infusion of too many MSC exacerbated the development of GVHD. Taken together, these results suggest that timing, dose and route of injection are all important factors to be considered to ensure successful therapeutic outcome. To investigate the in vivo mechanism of action, we conducted timed sacrifice experiments in the MHC-mismatched model to determine if MSC altered cytokine secretion and cellular effectors, such as DC, known to play a key role in GVHD. Despite the fact that MSC given post-HSCT enter an environment full of activated DC and IFNγ levels, by day 3 and 6 post infusion, these activated DC and IFNγ levels are decreased compared to controls or mice infused with MSC pre-transplant (p<0.05). This confirmed our in vitro data that IFNγ played an important role in MSC-mediated immunosuppression. In addition, when we removed a major source of IFNγ production in vivo by administering the T cell depleting antibody KT3 to mice with or without MSC, we found that although T cell depletion prolonged survival, MSC were unable to further enhance this effect. This was also true when MSC were used in combination with the conventional immunosuppressant cyclosporine. Finally, we examined whether the infusion of MSC would compromise the GVL effect. We found that whilst MSC could delay the onset of GVHD, in our model they did not alter the anti-tumour effects of the donor T cells. Overall, we have shown that MSC can delay but not prevent death from GVHD when administered at an appropriate time and dose and that IFNγ is required for MSC-mediated immunosuppression in our model. These data suggest that patients undergoing HSCT should be monitored for IFNγ, and administered MSC when high levels are reached. Whilst MSC may be a promising therapy for patients with severe GVHD, we highlight that further investigation is warranted before MSC are accepted for widespread use in the clinic. The risks and benefits for transplant recipients should be carefully considered before utilising MSC to treat or prevent GVHD.
Identifer | oai:union.ndltd.org:ADTP/282533 |
Creators | Melinda Elise Christensen |
Source Sets | Australiasian Digital Theses Program |
Detected Language | English |
Page generated in 0.0019 seconds