La réduction des émissions de polluants et la diminution de la consommation sont deux challenges fortement liés auxquels les constructeurs automobiles doivent faire face tout en maintenant les performances des moteurs. Les nouvelles stratégies telle que la réduction de la cylindrée associée à une optimisation de la boucle d'air (forte suralimentation et recirculation de gaz brûlés) possèdent ce potentiel. Cependant elles affectent la stabilité du moteur en favorisant les variations cycle à cycle (VCC) qui correspondent à une fluctuation de la combustion d'un cycle sur l'autre. L'objectif de cette thèse est de développer une méthodologie s'appuyant sur la Simulation aux Grandes Echelles (SGE) capable de prédire les VCC d'un moteur à allumage commandé. Les prédictions sont validées grâce à une base de données expérimentale conçue à l'IFP qui leur est dédiée. Une approche graduelle est employée : l'outil numérique est tout d'abord évalué sur une configuration simplifiée de moteur à piston sans combustion, puis appliqué à un moteur à allumage commandé entraîné pour valider la prédiction de l'aérodynamique interne. Sur cette dernière configuration le couplage avec le modèle de combustion DTFLES est rajouté pour simuler deux points de fonctionnement réactifs. Chacune de ces simulations intègre un ou plusieurs points de modélisation (les tétraèdres en maillage mobile, les modèles de choc et d'allumage, et la cinétique chimique) au préalable testés sur des configurations académiques. Ce travail de recherche montre que l'approche SGE, dans un contexte de calcul massivement parallèle, est un outil prometteur dans l'étude des VCC d'un moteur à allumage commandé de conception récente. / A major challenge for the development of internal combustion engines is to improve fuel economy and to reduce pollutant emissions while maintaining or enhancing engine performances. New strategies using downsizing with high levels of exhaust gas recirculation have this potential, but can impact on the combustion stability and trigger high cycle-to-cycle variations (CCV). The objective of this thesis is to set a methodology based on Large Eddy Simulation (LES) to study CCV of a Spark-Ignition (SI) engine. A gradual approach is used : the numerical tool is first evaluated on a motored axisymmetric piston-cylinder assembly, and then applied on a motored SI engine to validate the in-cylinder aerodynamic predictions. On this last configuration, the coupling with the turbulent combustion model DTFLES is added to simulate two operating points of the indirect injection engine mode. Each of these simulations takes into account one or several modeling key points (tetrahedra with moving mesh, the modelings of shock and ignition, and chemical kinetics) previously tested in academic configurations. This research work shows that LES approach, in the context of massively parallel computing, can be used to study the CCV of a realistic SI engine.
Identifer | oai:union.ndltd.org:theses.fr/2010INPT0040 |
Date | 16 June 2010 |
Creators | Enaux, Benoît |
Contributors | Toulouse, INPT, Poinsot, Thierry, Thobois, Ludovic |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds