In this work we address the problem of object recognition and localization from
sparse range data. The method is based upon comparing the 7-D error surfaces of objects in various poses, which result from the registration error function between two convolved surfaces. The objects and their pose values are encoded by a small set of feature vectors extracted from the minima of the error surfaces. The problem of object recognition is thus reduced to comparing these feature vectors to find the corresponding error surfaces between the runtime data and a preprocessed database.
Specifically, we present a new approach to the problems of pose determination, object recognition and object class recognition. The algorithm has been implemented and tested on both simulated and real data. The experimental results demonstrate the technique to be both effective and efficient, executing at 122 frames per second on standard hardware and with recognition rates exceeding 97% for a database of 60 objects. The performance of the proposed potential well space embedding (PWSE) approach on large size databases was also evaluated on the Princeton Shape Bench-
mark containing 1,814 objects. In experiments of object class recognition with the Princeton Shape Benchmark, PWSE is able to provide better classification rates than
the previous methods in terms of nearest neighbour classification. In addition, PWSE
is shown to (i) operate with very sparse data, e.g., comprising only hundreds of points per image, and (ii) is robust to measurement error and outliers. / Thesis (Ph.D, Electrical & Computer Engineering) -- Queen's University, 2010-01-24 23:07:30.108
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/5399 |
Date | 25 January 2010 |
Creators | Shang, LIMIN |
Contributors | Queen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.)) |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English, English |
Detected Language | English |
Type | Thesis |
Format | 4215240 bytes, application/pdf |
Rights | This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner. |
Relation | Canadian theses |
Page generated in 0.0248 seconds