Diplomová práca sa zaoberá detekciou a hodnotením skreslených snímok v retinálnych obrazových dátach. Teoretická časť obsahuje stručné zhrnutie anatómie oka a metód hodnotenia kvality obrazov všeobecne, ako aj konkrétne hodnotenie retinálnych obrazov. Praktická časť bola vypracovaná v programovacom jazyku Python. Obsahuje predspracovanie dostupných retinálnych obrazov za účelom vytvorenia vhodného datasetu. Ďalej je navrhnutá metóda hodnotenia troch typov šumu v skreslených retinálnych obrazoch, presnejšie pomocou Inception-ResNet-v2 modelu. Táto metóda nebola prijateľná a navrhnutá bola teda iná metóda pozostávajúca z dvoch krokov - klasifikácie typu šumu a následného hodnotenia úrovne daného šumu. Pre klasifikáciu typu šumu bolo využité filtrované Fourierove spektrum a na hodnotenie obrazu boli využité príznaky extrahované pomocou ResNet50, ktoré vstupovali do regresného modelu. Táto metóda bola ďalej rozšírená ešte o krok detekcie zašumených snímok v retinálnych sekvenciách.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:413115 |
Date | January 2020 |
Creators | Vašíčková, Zuzana |
Contributors | Chmelík, Jiří, Kolář, Radim |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | English |
Detected Language | Unknown |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0031 seconds