Return to search

Análise de imagens multiespectrais através de redes complexas / Multispectral image analysis through complex networks

Imagens multiespectrais estão presentes na grande maioria de dispositivos de imageamento atuais, desde câmeras pessoais até microscópios, telescópios e satélites. No entanto, grande parte dos trabalhos em análise de texturas e afins propõem abordagens monocromáticas, que muitas vezes consideram apenas níveis de cinza. Nesse contexto e considerando o aumento da capacidade dos computadores atuais, o uso da informação espectral deve ser considerada na construção de modelos melhores. Ultimamente redes neurais convolucionais profundas pré-treinadas tem sido usadas em imagens coloridas de 3 canais, porém são limitadas a apenas esse formato e computam muitas convoluções, o que demanda por hardware específico (GPU). Esses fatos motivaram esse trabalho, que propõem técnicas para a modelagem e caracterização de imagens multiespectrais baseadas em redes complexas, que tem se mostrado uma ferramenta eficiente em trabalhos anteriores e possui complexidade computacional similar à métodos tradicionais. São introduzidas duas abordagens para aplicação em imagens coloridas de três canais, denominadas Rede Multicamada (RM) e Rede Multicamada Direcionada (RMD). Esses métodos modelam todos os canais da imagem de forma conjunta, onde as redes possuem conexões intra e entre canais, de forma parecida ao processamento oponente de cor do sistema visual humano. Experimentos em cinco bases de textura colorida mostram a proposta RMD supera vários métodos da literatura no geral, incluindo redes convolucionais e métodos tradicionais integrativos. Além disso, as propostas demonstraram alta robustez a diferentes espaços de cor (RGB, LAB, HSV e I1I2I3), enquanto que outros métodos oscilam de base para base. Também é proposto um método para caracterizar imagens multiespectrais de muitos canais, denominado Rede Direcionada de Similaridade Angular (RDSA). Nessa proposta, cada pixel multiespectral é considerado como um vetor de dimensão equivalente à quantidade de canais da imagem e o peso das arestas representa sua similaridade do cosseno, apontando para o pixel de maior valor absoluto. Esse método é aplicado em um conjunto de imagens de microscopia por fluorescência de 32 canais, em um experimento para identificar variações na estrutura foliar do espécime Jacaranda Caroba submetidos à diferentes condições. O método RDSA obtém as maiores taxas de acerto de classificação nesse conjunto de dados, com 91, 9% usando o esquema de validação cruzada Leave-one-out e 90, 5(±1, 1)% com 10-pastas, contra 81, 8% e 84, 7(±2, 2) da rede convolucional VGG16. / Multispectral images are present in the vast majority of current imaging devices, from personal cameras to microscopes, telescopes and satellites. However, much of the work in texture analysis and the like proposes monochromatic approaches, which often consider only gray levels. In this context and considering the performance increase of current computers, the use of the spectral information must be considered in the construction of better models. Lately, pre-trained deep convolutional neural networks have been used in 3-channel color images, however they are limited to just this format and compute many convolutions, which demands specific hardware (GPU). These facts motivated this work, which propose techniques for the modeling and characterization of multispectral images based on complex networks, which has proved to be an efficient tool in previous works and has computational complexity similar to traditional methods. Two approaches are introduced for application in 3-channel color images, called Multilayer Network (RM) and Directed Multilayer Network (RMD). These methods model all channels of the image together, where the networks have intra- and inter-channel connections, similar to the opponent color processing of the human visual system. Experiments in five color texture datasets shows that the RMD proposal overcomes several methods of the literature in general, including convolutional networks and traditional integrative methods. In addition, the proposals have demonstrated high robustness to different color spaces (RGB, LAB, HSV and I1I2I3), while other methods oscillate from dataset to dataset. Moreover it is proposed a new method to characterize multispectral images of many channels, called Directed Network of Angular Similarity (RDSA). In this proposal, each multispectral pixel is considered as a vector of dimensions equivalent to the number of channels of the image and the weight of the edges represents its cosine similarity, pointing to the pixel of greatest absolute value. This method is applied to a set of fluorescence microscopy images of 32 channels in an experiment to identify variations in the leaf structure of the Jacaranda Caroba specimen under different conditions. The RDSA method obtains the highest classification rates in this dataset, with 91.9% with the Leave-one-out cross-validation scheme and 90.5(±1.1)% with 10-folds, against 81.8% and 84.7(±2.2) of the convolutional network VGG16.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-26092018-154159
Date26 July 2018
CreatorsScabini, Leonardo Felipe dos Santos
ContributorsBruno, Odemir Martinez
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguageEnglish
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0039 seconds