Return to search

The Adaptive Optics Lucky Imager : combining adaptive optics and lucky imaging

One of the highest resolution astronomical images ever taken in the visible were obtained by combining the techniques of adaptive optics and lucky imaging. The Adaptive Optics Lucky Imager (AOLI), being developed at Cambridge as part of a European collaboration, combines these two techniques in a dedicated instrument for the first time. The instrument is designed initially for use on the 4.2m William Herschel Telescope (WHT) on the Canary Island of La Palma. This thesis describes the development of AOLI, in particular the adaptive optics system and a new type of wavefront sensor, the non-linear curvature wavefront sensor (nlCWFS), being used within the instrument. The development of the nlCWFS has been the focus of my work, bringing the technique from a theoretical concept to physical realisation at the WHT in September 2013. The non-linear curvature wavefront sensor is based on the technique employed in the conventional curvature wavefront sensor where two image planes are located equidistant either side of a pupil plane. Two pairs of images are employed in the nlCWFS providing increased sensitivity to both high- and low- order wavefront distortions. This sensitivity is the reason the nlCWFS was selected for use with AOLI as it will provide significant sky-coverage using natural guide stars alone, mitigating the need for laser guide stars. This thesis is structured into three main sections; the first introduces the non-linear curvature wavefront sensor, the relevant background and a discussion of simulations undertaken to investigate intrinsic effects. The iterative reconstruction algorithm required for wavefront reconstruction is also introduced. The second section discusses the practical implementation of the nlCWFS using two demonstration systems as the precursor to the optical design used at the WHT and includes details of subsequent design changes. The final section discusses data from both the WHT and a laboratory setup developed at Cambridge following the observing run. The long-term goal for AOLI is to undertake science observations on the 10.4m Gran Telescopio Canarias, the world's largest optical telescope. The combination of AO and lucky imaging, when used on this telescope, will provide resolutions a factor of two higher than ever before achieved at visible wavelengths. This offers the opportunity to probe the Cosmos in unprecedented detail and has the potential to significantly advance our understanding of the Universe.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:607607
Date January 2014
CreatorsCrass, Jonathan
PublisherUniversity of Cambridge
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://www.repository.cam.ac.uk/handle/1810/245653

Page generated in 0.0213 seconds