Many image processing algorithms exist that can accurately detect humans and other objects such as vehicles and animals. Many of these algorithms require large amounts of processing often requiring hardware acceleration with powerful central processing units (CPUs), graphics processing units (GPUs), field programmable gate arrays (FPGAs), etc. Implementing an algorithm that can detect objects such as humans at longer ranges makes these hardware requirements even more strenuous as the numbers of pixels necessary to detect objects at both close ranges and long ranges is greatly increased. Comparing the performance of different low-power implementations can be used to determine a trade-off between performance and power. An image differencing algorithm is proposed along with selected low-power hardware that is capable of detected humans at ranges of 500 m. Multiple versions of the detection algorithm are implemented on the selected hardware and compared for run-time performance on a low-power system.
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-3978 |
Date | 09 August 2019 |
Creators | Merchant, Caleb |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.0023 seconds