Return to search

Combining text-based and vision-based semantics / Combining text-based and vision-based semantics

Learning and representing semantics is one of the most important tasks that significantly contribute to some growing areas, as successful stories in the recent survey of Turney and Pantel (2010). In this thesis, we present an in- novative (and first) framework for creating a multimodal distributional semantic model from state of the art text-and image-based semantic models. We evaluate this multimodal semantic model on simulating similarity judgements, concept clustering and the newly introduced BLESS benchmark. We also propose an effective algorithm, namely Parameter Estimation, to integrate text- and image- based features in order to have a robust multimodal system. By experiments, we show that our technique is very promising. Across all experiments, our best multimodal model claims the first position. By relatively comparing with other text-based models, we are justified to affirm that our model can stay in the top line with other state of the art models. We explore various types of visual features including SIFT and other color SIFT channels in order to have prelim- inary insights about how computer-vision techniques should be applied in the natural language processing domain. Importantly, in this thesis, we show evi- dences that adding visual features (as the perceptual information coming from...

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:313292
Date January 2011
CreatorsTran, Binh Giang
ContributorsHolub, Martin, Straková, Jana
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0026 seconds