Segmentation of vasculature tree is an important step of the process of image processing. There are many methods of automatic blood vessel segmentation. These methods are based on matched filters, pattern recognition or image classification. Use of automatic retinal image processing greatly simplifies and accelerates retinal images diagnosis. The aim of the automatic image segmentation algorithms is thresholding. This work primarily deals with retinal image thresholding. We discuss a few works using local and global image thresholding and supervised image classification to segmentation of blood tree from retinal images. Subsequently is to set of results from two different methods used image classification and discuss effectiveness of the vessel segmentation. Use image classification instead of global thresholding changed statistics of first method on healthy part of HRF. Sensitivity and accuracy decreased to 62,32 %, respectively 94,99 %. Specificity increased to 95,75 %. Second method achieved sensitivity 69.24 %, specificity 98.86% and 95.29 % accuracy. Combining the results of both methods achieved sensitivity up to72.48%, specificity to 98.59% and the accuracy to 95.75%. This confirmed the assumption that the classifier will achieve better results. At the same time, was shown that extend the feature vector combining the results from both methods have increased sensitivity, specificity and accuracy.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:220290 |
Date | January 2013 |
Creators | Svoboda, Ondřej |
Contributors | Jan, Jiří, Odstrčilík, Jan |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds