Return to search

GANtruth – a regularization method for unsupervised image-to-image translation / GANtruth – en regulariseringsmetod för oövervakad bild-till-bild-översättning

In this work, we propose a novel and effective method for constraining the output space of the ill-posed problem of unsupervised image-to-image translation. We make the assumption that the environment of the source domain is known, and we propose to explicitly enforce preservation of the ground-truth labels on the images translated from the source to the target domain. We run empirical experiments on preserving information such as semantic segmentation and disparity and show evidence that our method achieves improved performance over the baseline model UNIT on translating images from SYNTHIA to Cityscapes. The generated images are perceived as more realistic in human surveys and have reduced errors when using them as adapted images in the domain adaptation scenario. Moreover, the underlying ground-truth preservation assumption is complementary to alternative approaches and by combining it with the UNIT framework, we improve the results even further. / I det här arbetet föreslår vi en ny och effektiv metod för att begränsa värdemängden för det illa-definierade problemet som utgörs av oövervakad bild-till-bild-översättning. Vi antar att miljön i källdomänen är känd, och vi föreslår att uttryckligen framtvinga bevarandet av grundfaktaetiketterna på bilder översatta från källa till måldomän. Vi utför empiriska experiment där information som semantisk segmentering och skillnad bevaras och visar belägg för att vår metod uppnår förbättrad prestanda över baslinjemetoden UNIT på att översätta bilder från SYNTHIA till Cityscapes. De genererade bilderna uppfattas som mer realistiska i undersökningar där människor tillfrågats och har minskat fel när de används som anpassade bilder i domänpassningsscenario. Dessutom är det underliggande grundfaktabevarande antagandet kompletterat med alternativa tillvägagångssätt och genom att kombinera det med UNIT-ramverket förbättrar vi resultaten ytterligare.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-233849
Date January 2018
CreatorsBujwid, Sebastian
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2018:522

Page generated in 0.0173 seconds