Object Tracking plays a very pivotal role in many computer vision applications such as video surveillance, human gesture recognition and object based video compressions such as MPEG-4. Automatic detection of any moving object and tracking its motion is always an important topic of computer vision and robotic fields. This thesis deals with the problem of detecting the presence of debris or any other unexpected objects in footage obtained during spacecraft launches, and this poses a challenge because of the non-stationary background. When the background is stationary, moving objects can be detected by frame differencing. Therefore there is a need for background stabilization before tracking any moving object in the scene. Here two problems are considered and in both footage from Space shuttle launch is considered with the objective to track any debris falling from the Shuttle. The proposed method registers two consecutive frames using FFT based image registration where the amount of transformation parameters (translation, rotation) is calculated automatically. This information is the next passed to a Kalman filtering stage which produces a mask image that is used to find high intensity areas which are of potential interest.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-5463 |
Date | 01 January 2005 |
Creators | Vanumamalai, KarthikKalathi |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Page generated in 0.0025 seconds