Return to search

An Autonomous Unmanned Aerial Vehicle-Based Imagery System Development and Remote Sensing Images Classification for Agricultural Applications

This work concentrates on the topic of remote sensing using a multispectral imag-ing system for water management and agriculture applications. The platform, which is alight-weight inexpensive runway-free unmanned aerial vehicle (UAV), namely, AggieAir, ispresented initially. A major portion of this work focuses on the development of a light-weight multispectral imager payload for the AggieAir platform, called GhostFoto. Theimager is band-recongurable, covering both visual red, green, and blue (RGB) and nearinfrared (NIR) spectrum, and interfaced with UAV on-board computer. The developmentof the image processing techniques, which are based on the collected multispectral aerialimages, is also presented in this work. One application is to perform fully autonomous rivertracking for applications such as river water management. Simulation based on aerial mul-tispectral images is done to demonstrate the feasibility of the developed algorithm. Othereort is made to create a systematic method to generate normalized difference vegetationindex (NDVI) using the airborne imagery. The GhostFoto multispectral imaging systembased on AggieAir architecture is proven to be an innovative and useful tool.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-1509
Date01 December 2009
CreatorsHan, Yiding
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.0022 seconds