Return to search

Evaluation of hyperspectral band selection techniques for real-time applications

Processing hyperspectral image data can be computationally expensive and difficult to employ for real-time applications due to its extensive spatial and spectral information. Further, applications in which computational resources may be limited can be hindered by the volume of data that is common with airborne hyperspectral image data. This paper proposes utilizing band selection to down-select the number of spectral bands to consider for a given classification task such that classification can be done at the edge. Specifically, we consider the following state of the art band selection techniques: Fast Volume-Gradient-based Band Selection (VGBS), Improved Sparse Subspace Clustering (ISSC), Maximum-Variance Principal Component Analysis (MVPCA), and Normalized Cut Optimal Clustering MVPCA (NC-OC-MVPCA), to investigate their feasibility at identifying discriminative bands such that classification performance is not drastically hindered. This would greatly benefit applications where time-sensitive solutions are needed to ensure optimal outcomes. In this research, an NVIDIA AGX Xavier module is used as the edge device to run trained models on as a simulated deployed unmanned aerial system. Performance of the proposed approach is measured in terms of classification accuracy and run time.

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-6385
Date10 December 2021
CreatorsButler, Samantha
PublisherScholars Junction
Source SetsMississippi State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.0021 seconds