Tématem této disertační práce je klasifikace daty s nevyváženými daty. Jedná se o oblast strojového, jejímž cílem je řešit problémy, které plynou z toho, že jedna ze tříd je v datech zastoupena výrazně méně než třída druhá. Minoritní třída má často větší význam a tradiční metody upřednostňující majoritní třídu nedosahují dobrých výsledků na třídě minoritní. Dvě aplikační domény motivovaly výzkum a vedly na identifikaci dvou specifických, dosud neřešených problémů. V první z nich vedlo omezení kladené na minimální požadovanou přesnost na minoritní třídě v počítačové bezpečnosti na formulaci úlohy klasifikace s omezením. Navrhl jsem metodu, která kombinuje upravenou verzi logistické regrese a stochastické algoritmy, které vždy vylepšily výsledky logistické regrese.Druhou je doména analýzy učení (Learning Analytics), která motivovala definici problému predikce splnění cíle, jenž má specifikovaný termín splnění. Byl představen koncept sebe-učení (Self-Learning), kdy trénování modelu probíhá díky jedincům, kteří tento cíl splní předčasně. Díky malému počtu jedinců splňujících úlohu na začátku je problém silně nevyvážený, ale nevyváženost klesá směrem k termínu splnění. Na problému identifikace rizikových studentů distanční univerzity bylo ukázáno, že (1) takový koncept dává lepší výsledky než specifikovaná základna (baseline), (2) a že metody pro vypořádání se s nevyvážeností, které neberou v potaz informaci o doméně, nevedly k velkým zlepšením. Evaluace ukázala, že metody založené na znalosti domény v rozšířené verzi pro Self-Learning vylepšily klasifikaci více než běžné metody pro vypořádání se s nevyvážeností a že znalost příčiny nevyváženosti může vést k lepším výsledkům.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:412601 |
Creators | Hlosta, Martin |
Contributors | Popelínský, Lubomír, Štěpánková,, Olga, Zendulka, Jaroslav |
Publisher | Vysoké učení technické v Brně. Fakulta informačních technologií |
Source Sets | Czech ETDs |
Language | English |
Detected Language | Unknown |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0018 seconds