Return to search

Flow Environment on Cultured Endothelial Cells Using Computational Fluid Dynamics

Atherosclerosis is a systemic disease occurring in specific sections of the cardiovascular tree such as the carotid and the coronary arteries. Previous studies proposed a strong correlation between plaque localization and blood flow patterns in specific sections of the arteries. In order to elucidate cellular mechanisms that contribute to atherosclerosis, standard cone-and-plate devices are widely used in experiments to reproduce in vitro the effect of different hemodynamic conditions on endothelial cells.

In this study, a novel computational fluid dynamic (CFD) numerical code based on the immersed boundary method is developed to simulate this microscopic flow field under different geometries and flow conditions. A comprehensive validation of the CFD code is performed. Once validated, the code is used to analyze the flow field in the cone-and-plate device simulating conditions typically employed in endothelial cell experiments.

No previous studies have yet been performed on the fluid dynamics of the cone-and-plate device when surfaces representing actual endothelial cell contours are modeled on the plate surface. This represents a great opportunity to correlate the fluid dynamics in the experimental device and the biochemical properties of the cells under specific flow conditions. The challenging aspect of the problem is represented by its different length scales. While the size of the cone-and-plate device is of the order of millimeters, the endothelial cells laying on the plate surface have size of the order of microns. The goal is to obtain a spatial resolution smaller than the height of the single cell. This allows us to investigate the biological features of the endothelial cells under shear stress in different areas of their membrane surface. This feature must be incorporated in the numerical grid, representing a challenging computational problem and is expected to be a major contribution of the research.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/19826
Date17 August 2007
CreatorsPezzoli, Massimiliano
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0016 seconds