Philosophiae Doctor - PhD / The aim of this study was to design and build an electrohydraulic discharge reactor in such a way that the synthetic immobilized TiO2 nanophotocatalytic components could be integrated, for the production of active species such as OH radicals, ozone and hydrogen peroxide, as a cocktail to clean drinking water without the addition of chemicals. The research objectives include: • To design and construct the different AOP prototypes based on various electrode configurations and compare their operation.
• To optimize the discharge parameters and conditions of the best AOP system.
• To determine the effectiveness of the best prototype for the degradation of methylene
blue as model pollutant. • To compare the designed AOP system with the Sodis method for the disinfection of contaminated river water. • To prepare supported TiO2 nanoparticles via electro spinning, followed by combustion and study the effect on the morphology of TiO2 nanoparticles. • To determine the stability and robustness of composite nano-crystalline TiO2 photocatalysts by sonication • To determine the enhanced effect of combining the composite TiO2 in the AOP system on degradation of methylene blue under the same conditions. • To detect the active species promoting disinfection.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uwc/oai:etd.uwc.ac.za:11394/3329 |
Date | January 2013 |
Creators | Okolongo, Gauthier Nganda |
Contributors | Petrik, Leslie, Perold, Willem |
Publisher | University of Western Cape |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Thesis |
Rights | University of Western Cape |
Page generated in 0.0021 seconds