Return to search

Exogenous and Endogenous Danger Signals in Inflammatory Bowel Disease

The human chronic inflammatory bowel diseases (IBD), Crohns disease (CD) and ulcerative colitis (UC) are ostensibly disorders of innate immunity with an exaggerated inflammatory response and loss of tolerance to the normal enteric microbial flora. In this project, we have extensively characterized innate immune responses driven by Pathogen Associated Molecular Pattern Molecules (PAMPs) and the more recently recognized Damage Associated Molecular Pattern molecules (DAMPs). The prototype DAMP, a chromatin-associated protein, high mobility group box 1 (HMGB1), is released during cellular necrosis and is secreted from activated macrophages. Extracellularly, it binds the receptor for advanced glycation end products (RAGE), as well as toll-like receptor (TLR) 2 and TLR4, important in the recognition of PAMPs. PAMPs and DAMPs trigger inflammatory signaling pathways in neighboring cells through activation of the transcription factor family, NF-kappaB.
Much attention has been given to the central role played by PAMPs in the form of the enteric bacterial flora in IBD pathogenesis. We hypothesize that DAMPs also play a pivotal role in this process. Accordingly, we have determined the significance of DAMPs and PAMPs in the mucosal inflammatory response in macrophages and in vivo in mouse models of IBD.
We first investigated expression of TLRs in the gut to determine cell types in the intestinal epithelium that may respond to danger signals. TLR expression was most prominent on intestinal epithelial enteroendocrine cells (EEC). Using a murine EEC line, multiple functional consequences of TLR activation were demonstrated. Second, in IL-10 deficient (-/-) mice with chronic Th1-mediated enterocolitis, we demonstrate a role for HMGB1 in macrophage activation and IBD. Lastly, we examined an in vivo therapy targeted at inhibiting the prominent downstream effector of DAMP and PAMP signaling, NF-kappaB, in murine IBD. Inhibition of activated NF-kappaB with a short cell permeable peptide inhibited chronic enterocolitis in IL-10-/- mice.
In summary, this dissertation provides new insight into our understanding of intestinal innate mucosal inflammatory responses. We demonstrate the relevance of TLRs on EECs and the contribution of DAMP and PAMP signaling in disease. These results also provide proof of concept for new therapeutic approaches in IBD.

Identiferoai:union.ndltd.org:PITT/oai:PITTETD:etd-08312006-151600
Date31 August 2006
CreatorsDavé, Shaival H.
ContributorsPrabir Ray, Tim D. Oury, Scott E. Plevy, Paul D. Robbins, Sidney M. Morris
PublisherUniversity of Pittsburgh
Source SetsUniversity of Pittsburgh
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.pitt.edu/ETD/available/etd-08312006-151600/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Pittsburgh or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.002 seconds