Return to search

MHC-UNRESTRICTED MUC1-SPECIFIC T CELL RECEPTOR FOR CANCER IMMUNOTHERAPY/GENE THERAPY

MUC1 glycoprotein is overexpressed on the surface of a variety of epithelial tumors and has been under investigation as a target for immunotherapy. A number of cytotoxic lymphocyte clones were generated in our laboratory from breast and pancreatic cancer patients that recognized MUC1 on the surface of tumor cells in a TCR-mediated MHC-unrestricted manner. The purpose of this study was to test the feasibility, efficacy and safety of using MHC-unrestricted MUC1-specific T cell receptor (TCR) gene transfer as a tool for cancer immunotherapy. The TCR £ and £] chains were cloned from one MHC-unrestricted MUC1-specific CTL clone (MA). Various configurations of chimeric TCRs were constructed and were expressed on the surface of a variety of cell lines in vitro. The TCR-deficient T cell line, Jurkat JRT3.5, transfected with the TCR £ and £] chains from MA CTL clone fluxed calcium in response to stimulation by a MUC1+ pancreatic human tumor, HPAF. BWZ murine thymoma cells transfected with a single-chain TCR (scTCR) consisting of the TCR extracellular domain and the CD3 ê signaling domain) were triggered to secrete IL-2 in response to stimulation with different MUC1+ tumor cells. The tumor recognition and rejection functions of this scTCR were tested in vivo when SCID mice were reconstituted with bone marrow (BM) cells transduced with scTCR-MFG retroviral supernatant and challenged with HPAF tumor cells. Tumor growth in mice reconstituted with scTCR-transduced BM cells was significantly slower (P<0.05) than that seen in the control group. Tumor sections from TCR-reconstituted mice were infiltrated by neutrophils and macrophages, and to lesser extent, by NK cells. FACS analyses showed that BM cells transduced with scTCR-MFG could differentiate in vivo into multiple immune lineages including T cells, B cells, granulocytes, monocytes and NK cells that express the scTCR. The scTCR was expressed on higher percentages of cells of the innate immune system when compared to T and B cells. Human MUC1 transgenic (Tg.) mice reconstituted with BM cells transduced with this MUC1-specific TCR did not show any signs of autoimmunity, abnormal cellular infiltration or destruction of MUC1-expressing tissues. Transduction of BM with tumor-specific TCR represents a potentially efficacious gene therapy/immunotherapy approach. MUC1-specific MHC-unrestricted TCR will make this treatment applicable to all cancer patients with MUC1+ tumors, regardless of their HLA type.

Identiferoai:union.ndltd.org:PITT/oai:PITTETD:etd-12192003-014913
Date22 December 2003
CreatorsAlajez, Nehad M
ContributorsTheresa Whiteside, Margo R. Roberts, Anuradha Ray, Olivera J. Finn, William H. Chambers
PublisherUniversity of Pittsburgh
Source SetsUniversity of Pittsburgh
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.pitt.edu/ETD/available/etd-12192003-014913/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Pittsburgh or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0121 seconds