Return to search

Effect of chamber pressure on liquid drop impacts on a stationary smooth and dry surface

Impact of drops on a dry smooth surface was studied at elevated chamber pressures and low Reynold's numbers to characterize the effect of chamber pressure on drop splashing and spreading. Two drop sizes of methanol, ethanol, propanol, hexadecane and diesel were tested for impact speeds between 1.5 - 3.3 m/s and pressure of upto 12 bars. Splash ratio, unlike the results of Xu et al, increased sharply with decreasing impact speed suggesting that drop speed is a more critical parameter for splash. Drop splashing was also found to be affected by drop shape, with drop distortion having a significant impact on splash promotion or suppression. In accordance with existing theory, drop spreading and maximum spread factor were found to be independent of pressure in the regime tested. These observations provide new insights and comparison data for evaluating and modeling the behavior of alternate fuels like ethanol.

Identiferoai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-1593
Date01 December 2009
CreatorsMishra, Neeraj Kumar
ContributorsRatner, Albert
PublisherUniversity of Iowa
Source SetsUniversity of Iowa
LanguageEnglish
Detected LanguageEnglish
Typethesis
Formatapplication/pdf
SourceTheses and Dissertations
RightsCopyright 2009 Neeraj Kumar Mishra

Page generated in 0.0018 seconds