Ayant rappelé brièvement quelques réalisations matérielles de réseaux de neurones artificiels dans un premier chapitre cette thèse propose une architecture distribuée, synchrone fondée sur l'existence d'un processeur neurone autonome. Ce processeur pourra être personnalise suivant les caractéristiques du réseaux de neurones a implanter et pourra être connecte a d'autres neurones pour former un réseau de structure et de dimension fixées. Ce neurone se présente comme un circuit dédié fabrique dans un temps court dans un environnement du type compilateur de silicium. Un tel neurone a été conçu et fabrique et s'est avéré complètement opérationnel. Il implémenté sous sa version fabrique uniquement la phase de relaxation. Dans un troisième chapitre, on montre que sans modification de l'architecture, on peut inclure des possibilités d'apprentissage. Pour ceci un algorithme d'apprentissage par la rétropropagation du gradient a été propose et étudié et on montre son implantation sur le réseau de neurones propose en précisant l'adjonction dans la partie de contrôle du neurone a implanter. Enfin, dans un dernier chapitre, nous explorons la possibilité de réaliser de très grands circuits ce qui serait très judicieux pour faire face a la taille des réseaux de neurones requise pour les applications. Pour ceci, nous explorons les possibilités d'intégration tranche entière. En effet, il existe une tolérance aux fautes intrinsèques au calcul neuronal et de plus l'implantation physique régulière doit permettre d'isoler et d'exclure les neurones défaillants. Les possibilités d'implantation physique d'une architecture tranche entière sont donc présentées dans ce chapitre
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00339727 |
Date | 11 June 1991 |
Creators | Ouali, Jamel Eddine |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.003 seconds