The electronic structure of some transition metal compounds, specifically, Ca-doped LaMnO3,
fundamental Mn oxides (MnO, Mn2O3, Mn3O4, and MnO2), and Fe-doped ZnO is studied using a combination of soft X-ray spectroscopy and atomic multiplet calculations. X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES) are used as experimental tools to probe the unoccupied and occupied partial density of electronic states,respectively.<p>
Ca-doped LaMnO3 perovskites have attracted great attention due to their colossal magnetoresistance and a wide range of magnetic and structural transitions. The magnetic and charge transport properties of these perovskites are directly related with Mn 3d-occupancy or Mn-valency and therefore, an investigation of the Mn-valence at Ca-doped LaMnO3 system is important. In this system, the Mn-valency is generally considered as a mixture of Mn3+ and Mn4+. But my research suggests the presence of Mn2+ at the surface of Ca-doped LaMnO3 samples. It is observed that increasing Ca-doping decreases Mn2+ concentration, and conversely, increases Mn3+ concentration. High temperature annealing at 1000 °C in air leads to the full reduction of surface Mn2+. Mechanisms for these observations are proposed in this study.<p>
Mn oxides (MnO, Mn2O3, Mn3O4, and MnO2) are often used as reference standards for determining the Mn-valency in Mn-related complex systems and therefore a detailed understanding of their electronic structure is necessary. The Mn L2,3 XAS and O K XAS are measured for the four Mn oxides consisting of three common Mn oxidation states (Mn2+ in MnO, Mn3+ in Mn2O3, mixture of Mn2+ and Mn3+ in Mn3O4, and Mn4+ in MnO2). A significant energy shift with a systematic trend is observed in measured Mn L2,3 and O K absorption edges. These energy shifts are identified as a characteristic shift for different Mn oxidation states. Mn L2,3 Resonant Inelastic X-ray Scattering (RIXS) spectroscopy is demonstrated as a powerful tool in describing low energy excitations, e.g. d-d excitations and
charge-transfer excited states in Mn oxides. For the first time, a RIXS study of Mn2O3,Mn3O4, and MnO2 is accomplished. Atomic multiplet calculations are used to successfully
reproduce the energy positions and intensity variations of d-d excitation peaks observed in the
experiment, and thus to describe the experimental RIXS spectra.<p>
Finally, the local electronic structure of Fe implanted ZnO samples, a useful diluted magnetic
semiconductor for spintronics, is investigated to shed light on the existing debate about the
origin of ferromagnetism in these materials. Fe L2,3 XAS reveals that doped Fe ions are
present in both Fe2+ and Fe3+ valence states. A combined theoretical and experimental study
shows that doped ions are incorporated into Zn-sites of ZnO in tetrahedral symmetry. Fe L3-
RIXS measurements demonstrate that a high Fe-ion dose of 8 × 107 cm-2 causes formation of
FeO clusters, while low dose samples exhibit more free carriers.
Identifer | oai:union.ndltd.org:USASK/oai:usask.ca:etd-08212010-132458 |
Date | 30 August 2010 |
Creators | Choudhury, Sanjukta |
Contributors | Moewes, A., Koustov, S., Mueller, J., McWilliams, K., Tse, J., Chang, Gap Soo |
Publisher | University of Saskatchewan |
Source Sets | University of Saskatchewan Library |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://library.usask.ca/theses/available/etd-08212010-132458/ |
Rights | unrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. |
Page generated in 0.0021 seconds