Implication is a logical connective corresponding to the rule of causality "if ... then ...". Implications allow one to organize knowledge of some field of application in an intuitive and convenient manner. This thesis explores possibilities of automatic construction of all valid implications (implicative theory) in a given field. As the main method for constructing implicative theories a robust active learning technique called Attribute Exploration was used. Attribute Exploration extracts knowledge from existing data and offers a possibility of refining this knowledge via providing counter-examples. In frames of the project implicative theories were constructed automatically for two mathematical domains: algebraic identities and parametrically expressible functions. This goal was achieved thanks both pragmatical approach of Attribute Exploration and discoveries in respective fields of application. The two diverse application fields favourably illustrate different possible usage patterns of Attribute Exploration for automatic construction of implicative theories.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:29254 |
Date | 21 August 2015 |
Creators | Revenko, Artem |
Contributors | Ganter, Bernhard, Salzer, Gernot, Rudolph, Sebastian, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds