Pervious pavements in car parks and driveways reduce peak discharge and the volume of runoff flowing in to urban drains and improve the water quality by trapping the sediments in the infiltrated water. This reduces the risk of pollutants such as suspended solids and particle bound chemicals such as phosphorous, nitrogen, heavy metals and oils and hydrocarbons entering receiving waters. The key objectives of the study are to establish relationships between rainfall and pervious pavement runoff and quantify improvements to infiltrated stormwater quality through the pervious pavement. The field experimental results were used to calibrate the PCSWMMPP model and to develop water flow and quality improvement transfer functions of the MUSIC model for concrete block and turf cell pavements. The research reported herein has demonstrated that pervious pavements can be introduced as a sustainable stormwater management initiative and as a key Water Sensitive Urban Design feature to deliver numerous benefits to the environment. The outcomes from the study will be useful in designing environmentally friendly car parks, pedestrian paths, light traffic drive ways, sporting grounds and public areas in the future. Land developers and local government authorities will be major beneficiaries of the study which has increased the understanding of the use of pervious pavements and explored a number of issues that previously inhibited the wider use of pervious pavements in practice.
Identifer | oai:union.ndltd.org:ADTP/210455 |
Date | January 2008 |
Creators | Kadurupokune Wanniarachchi Kankanamge, Nilmini Prasadika, s3144302@student.rmit.edu.au |
Publisher | RMIT University. Civil, Environmental and Chemical Engineering |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | http://www.rmit.edu.au/help/disclaimer, Copyright Nilmini Prasadika Kadurupokune Wanniarachchi Kankanamge |
Page generated in 0.0017 seconds