Return to search

Praleistų reikšmių įrašymo metodų efektyvumas turizmo tyrime / Efficiency of missing data imputation methods in the survey on tourism

Šiame darbe išnagrinėjome kelis praleistų reikšmių įrašymo metodus, kuriuos taikėme išvykstamojo turizmo statistinio tyrimo 2.6. klausimo pirmiems dviem punktams: paslaugų paketo ir transporto išlaidoms. Įrašymo metodų efektyvumo analizę atlikome su pilnais duomenimis, juose fiktyviai padarydamos praleistas reikšmes ir į jas įrašydamos reikšmes keliais praleistų reikšmių įrašymo metodais. Tuomet turėdamos tikras ir įrašytas reikšmes galėjome palyginti parametrų įverčius. Kadangi praleistos reikšmės gali atsirasti atsitiktinai ir neatsitiktinai, todėl mes praleistų reikšmių įrašymo metodus taikėme trims atvejams: kai praleistos reikšmės atsiranda atsitiktinai, kai praleistos reikšmės atsiranda tada, kai neatsako respondentai turėję didžiausias ar mažiausias išlaidas kelionėje. Praleistų reikšmių įrašymui taikėme skirstiniu pagrįstą, vidurkio, atsitiktinio pakartojimo, santykiu pagrįstą ir daugiareikšmio įrašymo metodus, nesudarydamos įrašymo klasių ir sudarydamos įrašymo klases. Taigi, siūlome tokį pat praleistų reikšmių įrašymo metodų efektyvumo tyrimą atlikti ir likusiems 2.6. klausimo punktams, nusistatyti tinkamiausią įrašymo metodą ir tada jį taikyti jau tikroms praleistoms reikšmėms įrašyti. Be to, reikėtų atsižvelgti ir į dėl įrašymo atsirandančios dispersijos įvertinį, nes jos indėlis į bendrą dispersijos įvertinį yra nemažas. Atlikus praleistų reikšmių įrašymą, bus galima taikyti kompiuterinius įverčių skaičiavimo metodus ir nebus prarasta kita informacija, kurią... [toliau žr. visą tekstą] / In this work, we examined some missing data imputation methods in the survey on outbound tourism for the package tour and transport expenses. We performed an analysis of the efficiency of missing data imputation methods using full data sets with fictitious missing data applying various missing data imputation methods to fill in the missing data. Thus, we had real values and imputed values and could compare the estimated parameters. The missing data can appear randomly and non-randomly, so we applied missing data imputation methods in three cases: when missing data appear randomly and when missing data appear in case of non-response of respondents who had the highest or the lowest travel expenses. We applied distribution, average, random, ratio and multiple imputation methods for missing data imputation without using imputation classes and using imputation classes. We propose to perform the same efficiency survey of missing data imputation methods for the remaining items of expenses in the outbound tourism questionnaire in order to find out a convenient missing data imputation method and apply it for the real missing data (the current analysis was performed applying fictitious missing data). After the missing data imputation, we can apply the procedures of parameter estimation and we will not lose other information as it would be the case with the elimination of questionnaires having missing data.

Identiferoai:union.ndltd.org:LABT_ETD/oai:elaba.lt:LT-eLABa-0001:E.02~2007~D_20090908_194012-62333
Date08 September 2009
CreatorsBinkytė, Kristina
ContributorsŠukys, Algirdas, Vilnius University
PublisherLithuanian Academic Libraries Network (LABT), Vilnius University
Source SetsLithuanian ETD submission system
LanguageLithuanian
Detected LanguageUnknown
TypeMaster thesis
Formatapplication/pdf
Sourcehttp://vddb.library.lt/obj/LT-eLABa-0001:E.02~2007~D_20090908_194012-62333
RightsUnrestricted

Page generated in 0.0019 seconds