Die Implantation eines Medizinprodukts in den menschlichen Körper ruft eine Immunreaktion hervor, die zur fibrösen Einkapselung führen kann. Makrophagen in direktem Kontakt mit der Oberfläche des Implantats erfassen sensorisch den Fremdkörper und übersetzten das Signal in die Freisetzung zahlreicher löslicher Mediatoren. Das generierte Entzündungsmilieu moduliert die Heilungsreaktion und kann zur Anreicherung von Fibroblasten sowie zur Erhöhung der Matrixsyntheserate in der Wundumgebung führen. Eine dichte fibröse Kapsel um ein Medizinprodukt beeinträchtigt den Ersatz von Körperstrukturen, das Unterstützen physiologischer Körperfunktionen sowie die Effizienz einer medizinischen Therapie. Zur Identifizierung potenzieller Biomaterialkandidaten mit optimalen Eigenschaften ist jedoch eine evidenzbasierte Entscheidungsfindung notwendig und diese wiederum muss durch geeignete Testmethoden unterstützt werden.
Zur Erfassung lokaler Effekte nach Implantation eines Biomaterials begründet die Komplexi-tät der ablaufenden Fremdkörperreaktion die Anwendung von Tiermodellen als Goldstandard. Die Eingliederung von in vitro Modellsystemen in standardisierte Testverfahren scheitert oft an der Verfügbarkeit validierter, verlässlicher und reproduzierbarer Methoden. Demnach ist kein standardisiertes in vitro Testverfahren beschrieben, das die komplexen dreidimensionalen Gewebsstrukturen während einer Fremdkörperreaktion abbildet und sich zur Testung über längere Kontaktphasen zwischen Blutkomponenten und Biomaterialien eignet. Jedoch können in vitro Testungen kosten- und zeiteffizienter sein und durch die Anwendung humaner Zellen eine höhere Übertragbarkeit auf den Menschen aufweisen. Zusätzlich adressiert die Präferenz zu in vitro Testmethoden den Aspekt „Reduzierung“ der 3R-Prinzipien „Replacement, Reduction, Refinement“ (Ersatz, Reduzierung, Verbesserung) von Russel und Burch (1959) zu einer bewussten und begründeten Anwendung von Tiermodellen in der Wissenschaft. Ziel von diesem Forschungsvorhaben war die Entwicklung von humanen in vitro Modellsystemen, die den Kontakt zu Blutkomponenten sowie die Reaktion des umliegenden Bindegewebes bei lokaler Implantation eines Biomaterials abbilden. Referenzmaterialien, deren Gewebsantwort nach Implantation in Tiere oder den Menschen bekannt ist, dienten als Validierungskriterium für die entwickelten Modellsysteme. Die Anreicherung von Zellen sowie die Bildung extrazellulärer Matrix in der Wundumgebung stellen wichtige Teilprozesse während einer Fremdkörperreaktion dar. Für beide Teilprozesse konnte in einem indirekten zellbasierten Modellsystem der Einfluss einer zellvermittelten Konditionierung wie die Freisetzung von löslichen Mediatoren durch materialadhärente Makrophagen auf die gerichtete Wanderung von Fibroblasten sowie den Umbau eines dreidimensionalen Bindegewebsmodells aufgezeigt werden.
Des Weiteren ließ sich das Freisetzungsprofil von Zytokinen durch materialständige Makrophagen unter verschiedenen Testbedingungen wie der Kontamination mit LPS, der Oberflächenbehandlung mit humanem Blutplasma und der Gegenwart von IL-4 bestimmen. Die anschließende vergleichende statistische Modellierung der generierten komplexen multifaktoriellen Datenmatrix ermöglichte die Übersetzung in eine Biomaterialbewertung. Dieses entwickelte Testverfahren eignete sich einerseits zur Validierung von in vitro Testbedingungen sowie andererseits zur Bewertung von Biomaterialien. Darüber hinaus konnte in einem dreidimensionalen Fremdkörpermodell die komplexe dreidimensionale Struktur der extrazellulären Matrix in einer Wunde durch die Kombination unterschiedlicher Zell- und Matrixkomponenten biomimetisch nachgebaut werden. Diese neuartigen dreidimensionalen Fremdkörpermodelle ermöglichten die Testung von Biomaterialien über längere Testphasen und können in anschließenden Studien angewandt werden, um dynamische Prozesse zu untersuchen. Zusammenfassend konnten in dieser Arbeit drei unterschiedliche Teststrategien entwickelt werden, die (I) die Bewertung von Teilprozessen ermöglichen, (II) die Identifizierung verlässlicher Testbedingungen unterstützen und (III) biomimetisch ein Wundgewebe abbilden. Wesentlich ist, dass biomimetisch ein dreidimensionales Gewebemodell entwickelt werden konnte, das eine verlässliche Unterscheidungskapazität zwischen Biomaterialien aufweist. / The implantation of a medical product into the human body induces an immune reaction, which may lead to its fibrous encapsulation. Macrophages in direct contact to the surface sense the foreign body and translate the signal in the secretion of multiple soluble mediators. This generated inflammatory milieu modulates the healing reaction, may induce the accumulation of fibroblasts and lead in the wound microenvironment to an increased matrix synthesis rate. A dense fibrous capsule surrounding a medical product is able to impair the replacement of body structures, the support of physiological body functions as well as the efficiency of a medical therapy. To identify potential biomaterial candidates with optimal characteristics an evidence-based decision making process is necessary and furthermore affords the support by appropriate test procedures.
To study local effects after implantation of biomaterials, the complexity of the foreign body reaction justifies the application of animal models as gold standard. The integration of in vitro test procedures into standardized test strategies often fails by the availability of validated, reliable and reproducible methods. According to that there is no standardized test procedure, which resembles the three-dimensional tissue structures during a foreign body reaction and is suited for longer contact phases in between blood components and biomaterials. In vitro tests are often more cost and time efficient and show as well by applying human cells a high transferability on human beings. Additionally the preference to in vitro test procedures addresses the “reduction” aspect of the Russel and Burch’s (1959) 3R-principles “replace-ment, reduction and refinement” to a conscious and reasoned use of animal models in science. Aim of this research project was the development of human in vitro model systems, which resemble the contact to blood components and the reaction of the surrounding soft tissue following implantation of a biomaterial. Reference materials, whose tissue integration after implantation in animals or humans is described, were applied for the developed model systems as validation criterion. The accumulation of cells and the synthesis of extracellular matrix in the surrounding wound are relevant sub processes during a foreign body reaction. In an indirect cell-based model system the influence of the cell-mediated conditioning initiated by the material-induced and macrophage-mediated liberation of soluble mediators was shown on both sub processes the aligned migration of fibroblasts as well as the remodeling of a three-dimensional tissue model. Additionally, the cytokine secretion profile by material-adherent macrophages was characterized under different test conditions such as the contamination with LPS, the surface treatment with human plasma and the presence of IL-4. The following comparative statistical modelling allowed a transformation of the generated complex multi-factorial data matrix to a biomaterial ranking. The here developed test procedure was suitable for the validation of in vitro test conditions as well as the evaluation of the reference biomaterials. Last, by the combination of different cells and matrix structures the complex three-dimensional structure of the extracellular matrix in a wound was biomimetically reconstructed. Those novel three-dimensional foreign body models enabled the testing of biomaterials over longer test phases and might be applied in following studies to investigate dynamic processes. Summarizing in this research project three different test strategies were developed, which (I) enable the evaluation of sub processes, (II) support the identification of reliable test conditions and (III) biomimetically reconstruct a wound tissue. Most important is, that a three-dimensional tissue model was biomimetically developed, which showed a reliable discriminatory capacity in between biomaterials.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:16289 |
Date | January 2019 |
Creators | Jannasch, Maren Annika |
Source Sets | University of Würzburg |
Language | deu |
Detected Language | German |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://creativecommons.org/licenses/by-nc-nd/4.0/deed.de, info:eu-repo/semantics/openAccess |
Page generated in 0.0032 seconds