Return to search

Parallel Heat Transport in Magnetized Plasma

A code that solves the coupled electron drift kinetic and temperature equations has been written to study the effects of collisionality and particle trapping on temperature equilibration along magnetic field lines. A Chapman-Enskog-like approach is adopted with the time-dependent distribution function written as the sum of a dynamic Maxwellian and a kinetic distortion expanded in Legendre polynomials. The drift kinetic equation is solved on a discrete grid in normalized speed, and an FFT algorithm is used to treat the onedimensional spatial domain along the magnetic field. The dependence of the steady-state temperature on collisionality and magnetic well depths is discussed in detail. As collisionality decreases (increasing background temperature), temperature variations decrease. As magnetic well depth increases (at fixed collisionality), temperature variations along the field line increase.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-2468
Date01 May 2013
CreatorsSharma, Mukta
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.0021 seconds