An initiative to standardize the nomenclature in Sweden started in 2016 along with the creation of the local database Medical Information Quality Archive (MIQA) and a national radiotherapy register on Information Network for CAncercare (INCA). A problem of identifying the clinical tumor volume (CTV) structures and prescribed dose arose when the consecutive number, which is added to the CTV-name, was made inconsistently in MIQA and INCA. Deep neural networks (DNN) were promising tools to solve the multi-label classification task of the CTV to enable automatic labeling in the database. Prostate cancer patients that often have more than one type of organ in the same CTV structure were chosen for proof of concept. The DNN used supervised training in a 2D fashion where the radiation therapy (RT) structures along with the CT image were fed, slice by slice, to AlexNet and VGGNet to label the CTV structures in the local database system MIQA and INCA. The study also includes three methods to classify a final label for the CTV structure since the model makes the predictions on each slice. The three methods were maximum method by taking the maximum prediction for each class, minimum method by taking the minimum prediction for each class and occurrence method. The occurrence method chooses the maximum prediction if the network has predicted the class over 0.5 at least two times and the minimum prediction if not. The DNN and volume classification methods performed well where the maximum and occurrence method performed the best and can be used to interpret RT volumes in MIQA and INCA for prostate cancer patients. This novel study gives promising results for the future development of deep neural networks classifying RT structures for more than one type of cancer patient. / Ett initiativ för att standardisera nomenklaturen i Sverige startade 2016 tillsammans med skapandet av den lokala databasen Medical Information Quality Archive (MIQA) och ett nationellt radioterapikvalitetsregister på plattformen Information Network for CAncercare (INCA). Ett problem med att identifiera kliniska tumörvolymstrukturer (CTV-strukturer) och ordinerad dos uppstod när de på varandra följande siffrorna, som adderas till CTV-namnet för att skilja de olika CTV:erna från varandra, gjordes inkonsekvent i MIQA och INCA. Djupa neurala nätverk (DNN) är lovande verktyg för att lösa klassificeringen av CTV för att möjliggöra automatisk annotering för multippla etiketter i databasen. Prostatacancerpatienter vars radioterapistrukturer (RT-strukturer) ofta innehåller fler än ett organ användes därför för att bevisa konceptet för fleretikettsklassificering. DNN:et använde övervakad inlärning av 2D-bilder där RT-strukturerna tillsammans med CT-bilderna matades in, snitt för snitt, till AlexNet och VGGNet för att namnge CTV-strukturerna i det lokala databassystemet MIQA och sedan i INCA. Studien inkluderar även tre metoder för en slutlig strukturetikett eftersom modellen gör sina förutsägelser på varje snitt. Metoderna var maximum där den högsta förutsägelsen noteras för varje klass, minimum där den lägsta förutsägelsen noteras för varje klass och förekomst där den högsta förutsägelsen noteras om klassen har fått minst två förutsägelser över 0.5 annars noteras den lägsta förutsägelsen. DNN:en och volymetikettmetoderna gav bra resultat där maximum- och förekomstmetoden gav bäst resultat och kan användas för att tolka RT-volymer i MIQA och INCA för prostatacancerpatienter. Denna nya studie ger lovande resultat för framtida utveckling av djupa neurala nätverk som klassificerar strukturer från mer än en typ av cancerpatient.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-267337 |
Date | January 2019 |
Creators | Welander, Lina |
Publisher | KTH, Medicinteknik och hälsosystem |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-CBH-GRU ; 2019:107 |
Page generated in 0.0017 seconds