The main benefit of the work is the optimization of the hardware configuration for the calculation of neural networks. The theoretical part describes neural networks, deep learning frameworks and hardware options. The next part of the thesis deals with implementation of performance tests, which include application of Inception V3 and ResNet models. Network models are applied to various graphics cards and computing hardware. The output of the thesis is the implemented model of the network Inception V3, which examines the graphics cards and their performance, time-consuming calculations and their efficiency. The ResNet model is applied to a section that examines other impacts on neural network computing such as used disk, operating memory, and so on. Each practical part contains a discussion where the knowledge of the given part is explained. In the case of consumption measurement, a mismatch between the declaration by the manufacturer and the measured values was identified.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:400885 |
Date | January 2019 |
Creators | Bronda, Samuel |
Contributors | Kolařík, Martin, Burget, Radim |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Slovak |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds