Return to search

Low-Temperature Synthesis of NiSb₂, Cu₂Sb, InSb and Sb₂Te₃ Starting from the Elements: Dedicated to Professor Thomas Schleid on the Occasion of his 65th Birthday

Ionic liquids (ILs) are able to activate elements that are insoluble in common solvents. Here, the synthesis of binary antimony compounds directly from elements was explored. The 12 elements Ti-Cu, Al, Ga, In, and Te, known to form binary compounds with Sb, were reacted with Sb in [P₆₆₆₁₄]Cl under inert conditions in a closed glass flask with vigorous stirring for 16 h at 200 °C. This was immediately successful in four cases and resulted in the formation of NiSb, InSb, Cu₂Sb and Sb₂Te3. The applied reaction temperature is several hundred degrees below the temperatures required for solvent-free conversions. Compared to reactions based on diffusion in the solid state, reaction times are much shorter. The IL is not consumed and can be recycled. Since the reaction with Cu showed almost complete conversion, the influences of reaction time, temperature and medium were further investigated. Among the tested imidazolium ILs ([BMIm]Cl, [BMIm][OAc], [BDMIm]Cl) and phosphonium ILs ([P₆₆₆₁₄]X, X=Cl⁻, [DCA]⁻, [OAc]⁻, [NTf₂]⁻), those with chloride anion yielded the best results. In a diffusion experiment, Cu₂Sb formed on the copper, which indicates that antimony forms mobile species in these ILs. Supplemental crystal structure data of (As₃S₄)[AlCl₄], which was ionothermally synthesized from As and S, are reported.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:91983
Date11 June 2024
CreatorsGrasser, Matthias A., Müller, Ulrike, Ruck, Michael
PublisherWiley-VCH
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation1521-3749, e202200195, 10.1002/zaac.202200195, info:eu-repo/grantAgreement/Deutsche Forschungsgemeinschaft/SPP 1708: Materialsynthese nahe Raumtemperatur/237028221/

Page generated in 0.002 seconds