Return to search

The design and synthesis of novel HIV-1 protease inhibitors

This study has focused on the synthesis of truncated analogues of the hydroxyethylene dipeptide isosteres, such as Ritonavir®, currently in clinical use as HIV-1 protease inhibitors. The reactions of pyridine-2- and quinoline-2-carbaldehydes with methyl acrylate, in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) or 3- hydroxyquinuclidine (3-HQ) as nucleophilic catalysts, have afforded a series of Baylis- Hillman adducts, acetylation and cyclisation of which have provided access to a series of indolizine-2-carboxylate esters. The carboxylic acids, obtained by base-catalyzed hydrolysis of these esters, have been coupled with various protected (and unprotected) amino compounds using the peptide coupling agent, 1,1’-carbonyldiimidazole (CDI), to afford a series of indolizine-2-carboxamides as indolizine-based truncated Ritonavir® analogues in quantitative yield. Aza-Michael reactions of pyridine-3-carbaldehydederived Baylis-Hillman adducts with various amino compounds have provided access to a range of pyridine-based products as mixtures of diastereomeric aza-Michael products. The assignment of the relative stereochemistry of the aza-Michael products has been established using 1-D and 2-NOESY experiments and computer modelling techniques. Computer modelling studies have also been conducted on selected aza-Michael products using ACCELRYS Cerius2 software, followed by interactive docking into the HIV-1 protease receptor site, using AUTODOCK 4.0. The docking studies have revealed hydrogen-bonding interactions between the enzyme and the synthetic ligands. Saturation Transfer Difference (STD) NMR experiments have also indicated binding of some of the aza-Michael products to the HIV-1 protease subtype C enzyme, thus indicating their binding and possible inhibitory potential.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:rhodes/vital:4305
Date January 2009
CreatorsTukulula, Matshawandile
PublisherRhodes University, Faculty of Science, Chemistry
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis, Masters, MSc
Format155 leaves, pdf
RightsTukulula, Matshawandile

Page generated in 0.0022 seconds