La modélisation géométrique et la sémantisation de scènes intérieures à partir d'échantillon de points et un sujet de recherche qui prend de plus en plus d'importance. Cependant, le traitement d'un ensemble volumineux de données est rendu difficile d'une part par le nombre élevé d'objets parasitant la scène et d'autre part par divers défauts d'acquisitions comme par exemple des données manquantes ou un échantillonnage de la scène non isotrope. Cette thèse s'intéresse de près à de nouvelles méthodes permettant de modéliser géométriquement un nuage de point non structuré et d’y donner de la sémantique. Dans le chapitre 2, nous présentons deux méthodes permettant de transformer le nuage de points en un ensemble de formes. Nous proposons en premier lieu une méthode d'extraction de lignes qui détecte des segments à partir d'une coupe horizontale du nuage de point initiale. Puis nous introduisons une méthode par croissance de régions qui détecte et renforce progressivement des régularités parmi les formes planaires. Dans la première partie du chapitre 3, nous proposons une méthode basée sur de l'analyse statistique afin de séparer de la structure de la scène les objets la parasitant. Dans la seconde partie, nous présentons une méthode d'apprentissage supervisé permettant de classifier des objets en fonction d'un ensemble de formes planaires. Nous introduisons dans le chapitre 4 une méthode permettant de modéliser géométriquement le volume d'une pièce (sans meubles). Une formulation énergétique est utilisée afin de labelliser les régions d’une partition générée à partir de formes élémentaires comme étant intérieur ou extérieur de manière robuste au bruit et aux données. / Geometric modeling and semantization of indoor scenes from sampled point data is an emerging research topic. Recent advances in acquisition technologies provide highly accurate laser scanners and low-cost handheld RGB-D cameras for real-time acquisition. However, the processing of large data sets is hampered by high amounts of clutter and various defects such as missing data, outliers and anisotropic sampling. This thesis investigates three novel methods for efficient geometric modeling and semantization from unstructured point data: Shape detection, classification and geometric modeling. Chapter 2 introduces two methods for abstracting the input point data with primitive shapes. First, we propose a line extraction method to detect wall segments from a horizontal cross-section of the input point cloud. Second, we introduce a region growing method that progressively detects and reinforces regularities of planar shapes. This method utilizes regularities common to man-made architecture, i.e. coplanarity, parallelism and orthogonality, to reduce complexity and improve data fitting in defect-laden data. Chapter 3 introduces a method based on statistical analysis for separating clutter from structure. We also contribute a supervised machine learning method for object classification based on sets of planar shapes. Chapter 4 introduces a method for 3D geometric modeling of indoor scenes. We first partition the space using primitive shapes detected from permanent structures. An energy formulation is then used to solve an inside/outside labeling of a space partitioning, the latter providing robustness to missing data and outliers.
Identifer | oai:union.ndltd.org:theses.fr/2015NICE4034 |
Date | 24 June 2015 |
Creators | Oesau, Sven |
Contributors | Nice, Alliez, Pierre, Lafarge, Florent |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0024 seconds