Return to search

Imaging the Mechanics of Hydraulic Fracturing in Naturally-fractured Reservoirs Using Induced Seismicity and Numerical Modeling

The primary objective of this study is to improve understanding of the mechanics of hydraulic fracturing in naturally-fractured reservoirs. The study focuses on enhancing the interpretation of hydraulic fracture-induced microseismic data using an S-wave Gaussian-beam method and numerical modeling techniques for interpretation. The S-wave Gaussian-beam method was comprehensively calibrated by synthetic and real data sets with different recording networks, and this showed the potential to retrieve additional microseismic data from hydraulic fracturing with linear receiver arrays. This approach could enhance current practice because a large number of induced events in these environments have very strong S-waves with P-wave amplitudes similar, or less than, background noise levels. The numerical study using the distinct element methods PFC2D and PFC3D was used to validate the understanding of the hydraulic fracturing mechanisms induced in laboratory and field fluid treatments in naturally-fractured reservoirs. This was achieved through direct comparison with the results of the geometry of hydraulic fractures and seismic source information (locations, magnitudes, and mechanisms) from both laboratory experiments and field observations. A suite of numerical models with fully-dynamic and hydro-mechanical coupling has been used to examine in detail the interaction between natural and induced fractures with the variations of the differential stresses and the orientations of the pre-fractures, and the relationship between the fluid front, the fracture tip, and the induced seismicity. The numerical results qualitatively agreed with the laboratory and field observations of the geometry of hydraulic fractures, confirmed the possible mechanics of new fracture development and their interactions with natural fractures, and illustrated the possible relationship between the fluid front and the fracture tip. The validated model could therefore help track the potential extent of induced fracturing in naturally-fractured reservoirs and the extent to which it can be detected by a microseismic monitoring array in order to assess the effectiveness of a hydraulic fracturing project.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/32966
Date05 September 2012
CreatorsZhao, Xueping
ContributorsYoung, R. Paul
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.002 seconds