Return to search

SURROGATE SEARCH: A SIMULATION OPTIMIZATION METHODOLOGY FOR LARGE-SCALE SYSTEMS

For certain settings in which system performance cannot be evaluated by analytical methods, simulation models are widely utilized. This is especially for complex systems. To try to optimize these models, simulation optimization techniques have been developed. These attempt to identify the system designs and parameters that result in (near) optimal system performance. Although more realistic results can be provided by simulation, the computational time for simulator execution, and consequently, simulation optimization may be very long. Hence, the major challenge in determining improved system designs by incorporating simulation and search methodologies is to develop more efficient simulation optimization heuristics or algorithms.
This dissertation develops a new approach, Surrogate Search, to determine near optimal system designs for large-scale simulation problems that contain combinatorial decision variables. First, surrogate objective functions are identified by analyzing simulation results to observe system behavior. Multiple linear regression is utilized to examine simulation results and construct surrogate objective functions. The identified surrogate objective functions, which can be quickly executed, are then utilized as simulator replacements in the search methodologies. For multiple problems containing different settings of the same simulation model, only one surrogate objective function needs to be identified. The development of surrogate objective functions benefits the optimization process by reducing the number of simulation iterations.
Surrogate Search approaches are developed for two combinatorial problems, operator assignment and task sequencing, using a large-scale sortation system simulation model. The experimental results demonstrate that Surrogate Search can be applied to such large-scale simulation problems and outperform recognized simulation optimization methodology, Scatter Search (SS). This dissertation provides a systematic methodology to perform simulation optimization for complex operations research problems and contributes to the simulation optimization field.

Identiferoai:union.ndltd.org:PITT/oai:PITTETD:etd-06112006-173332
Date27 September 2006
CreatorsLai, Jyh-Pang
ContributorsCalvin C. Lai, Larry J. Shuman, Matthew D. Bailey, Randall P. Sadowski, Bopaya Bidanda, Bryan Norman
PublisherUniversity of Pittsburgh
Source SetsUniversity of Pittsburgh
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.pitt.edu/ETD/available/etd-06112006-173332/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Pittsburgh or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0102 seconds