The application of Wireless Sensor Networks (WSNs) with a large number of tiny, cost-efficient, battery-powered sensor nodes that are able to communicate directly with each other poses many challenges.
Due to the large number of communicating objects and despite a used CSMA/CA MAC protocol, there may be many signal collisions.
In addition, WSNs frequently operate under harsh conditions and nodes are often prone to failure, for example, due to a depleted battery or unreliable components.
Thus, nodes or even large parts of the network can fail.
These aspects lead to reliable data dissemination and data storage being a key issue.
Therefore, these issues are addressed herein while keeping latency low, throughput high, and energy consumption reduced.
Furthermore, simplicity as well as robustness to changes in conditions are essential here.
In order to achieve these aims, a certain amount of redundancy has to be included.
This can be realized, for example, by using network coding.
Existing approaches, however, often only perform well under certain conditions or for a specific scenario, have to perform a time-consuming initialization, require complex calculations, or do not provide the possibility of early decoding.
Therefore, we developed a network coding procedure called Broadcast Growth Codes (BCGC) for reliable data dissemination, which performs well under a broad range of diverse conditions.
These can be a high probability of signal collisions, any degree of nodes' mobility, a large number of nodes, or occurring node failures, for example.
BCGC do not require complex initialization and only use simple XOR operations for encoding and decoding.
Furthermore, decoding can be started as soon as a first packet/codeword has been received.
Evaluations by using an in-house implemented network simulator as well as a real-world testbed showed that BCGC enhance reliability and enable to retrieve data dependably despite an unreliable network.
In terms of latency, throughput, and energy consumption, depending on the conditions and the procedure being compared, BCGC can achieve the same performance or even outperform existing procedures significantly while being robust to changes in conditions and allowing low complexity of the nodes as well as early decoding. / Der Einsatz von drahtlosen Sensornetzen (Wireless Sensor Networks, WSNs) mit einer Vielzahl hochintegrierter, kostengünstiger und batteriebetriebener Sensorknoten, die direkt miteinander kommunizieren können, birgt viele Herausforderungen.
Aufgrund der großen Anzahl von kommunizierenden Objekten kann es trotz eines verwendeten CSMA/CA MAC Protokolls zu vielen Signalkollisionen kommen.
Darüber hinaus arbeiten WSNs häufig unter rauen Bedingungen und die Knoten sind oft anfällig für Ausfälle, z.B. aufgrund aufgebrauchter Energiekapazität oder defekter Komponenten.
Infolgedessen können einzelne Knoten oder auch große Teile des Netzes ausfallen.
Diese Aspekte führen dazu, dass zuverlässige Datenverteilung und Datenhaltung von entscheidender Bedeutung sind und folglich im Rahmen dieser Arbeit adressiert werden.
Gleichzeitig soll die Latenz niedrig, der Durchsatz hoch und der Energieverbrauch möglichst gering gehalten werden.
Des Weiteren sind eine geringe Komplexität sowie Robustheit gegenüber veränderten Bedingungen wesentlich.
Um diese Ziele zu erreichen, ist ein gewisses Maß an Redundanz nötig.
Dies kann beispielsweise durch die Verwendung von Netzwerkkodierung realisiert werden.
Bestehende Ansätze liefern jedoch oft nur unter bestimmten Bedingungen oder für ein spezifisches Szenario gute Performanz-Ergebnisse, müssen aufwändig initialisiert werden, benötigen komplexe Berechnungen oder bieten keine Möglichkeit für frühzeitige Dekodierung.
Daher haben wir ein als Broadcast Growth Codes (BCGC) bezeichnetes Netzwerkkodierungsverfahren für zuverlässige Datenverteilung entwickelt, welches unter einem breiten Spektrum unterschiedlicher Bedingungen gute Ergebnisse erzielt.
Zu diesen Bedingungen gehören zum Beispiel eine hohe Wahrscheinlichkeit von Signalkollisionen, ein beliebiger Grad an Knotenmobilität, eine große Knotenanzahl oder das Auftreten von Knotenausfällen.
BCGC benötigen keine komplexe Initialisierung und verwenden nur einfache XOR-Operationen für Kodierung und Dekodierung.
Darüber hinaus kann mit der Dekodierung bereits begonnen werden, sobald ein erstes Paket/Codewort empfangen wurde.
Evaluationen mit einem eigens implementierten Netzwerksimulator sowie einem realen Testbed haben gezeigt, dass BCGC ermöglichen, Daten trotz eines unzuverlässigen Netzwerks zuverlässig zu erhalten.
In Bezug auf Latenz, Durchsatz und Energieverbrauch können BCGC, je nach Bedingungen und verglichenem Verfahren, vergleichbare Ergebnisse wie bestehende Verfahren erzielen oder diese sogar deutlich übertreffen, während sie gleichzeitig robust gegenüber veränderten Bedingungen sind, eine geringe Komplexität der Knoten erlauben sowie eine frühzeitige Dekodierung ermöglichen.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:27224 |
Date | January 2022 |
Creators | Runge, Isabel Madeleine |
Source Sets | University of Würzburg |
Language | English |
Detected Language | German |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://creativecommons.org/licenses/by-sa/4.0/deed.de, info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds