The objective of the cellular manufacturing is to simplify the management of the<p>manufacturing industries. In regrouping the production of different parts into clusters,<p>the management of the manufacturing is reduced to manage different small<p>entities. One of the most important problems in the cellular manufacturing is the<p>design of these entities called cells. These cells represent a cluster of machines that<p>can be dedicated to the production of one or several parts. The ideal design of a<p>cellular manufacturing is to make these cells totally independent from one another,<p>i.e. that each part is dedicated to only one cell (i.e. if it can be achieved completely<p>inside this cell). The reality is a little more complex. Once the cells are created,<p>there exists still some traffic between them. This traffic corresponds to a transfer of<p>a part between two machines belonging to different cells. The final objective is to<p>reduce this traffic between the cells (called inter-cellular traffic).<p>Different methods exist to produce these cells and dedicated them to parts. To<p>create independent cells, the choice can be done between different ways to produce<p>each part. Two interdependent problems must be solved:<p>• the allocation of each operation on a machine: each part is defined by one or<p>several sequences of operations and each of them can be achieved by a set of<p>machines. A final sequence of machines must be chosen to produce each part.<p>• the grouping of each machine in cells producing traffic inside and outside the<p>cells.<p>In function of the solution to the first problem, different clusters will be created to<p>minimise the inter-cellular traffic.<p>In this thesis, an original method based on the grouping genetic algorithm (Gga)<p>is proposed to solve simultaneously these two interdependent problems. The efficiency<p>of the method is highlighted compared to the methods based on two integrated algorithms<p>or heuristics. Indeed, to form these cells of machines with the allocation<p>of operations on the machines, the used methods permitting to solve large scale<p>problems are generally composed by two nested algorithms. The main one calls the<p>secondary one to complete the first part of the solution. The application domain goes<p>beyond the manufacturing industry and can for example be applied to the design of<p>the electronic systems as explained in the future research.<p> / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
Identifer | oai:union.ndltd.org:ulb.ac.be/oai:dipot.ulb.ac.be:2013/210160 |
Date | 19 March 2010 |
Creators | Vin, Emmanuelle |
Contributors | Delchambre, Alain, Ndiaye, Alassane Ballé, RIANE, Fouad, Birattari, Mauro, Dolgui, Alexandre A., Bersini, Hugues, Falkenauer, Emanuel |
Publisher | Universite Libre de Bruxelles, Université libre de Bruxelles, Faculté des sciences appliquées – Gestion industrielle, Bruxelles |
Source Sets | Université libre de Bruxelles |
Language | French |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis, info:ulb-repo/semantics/doctoralThesis, info:ulb-repo/semantics/openurl/vlink-dissertation |
Format | 1 v. (xviii, 307 p.), No full-text files |
Page generated in 0.0023 seconds