One strategy for bone regenerative engineering is to use matrices associated to osteogenic and angiogenic molecules to increase bone formation. The aim of the present study was to evaluate the efficacy of treatment of extensive cranial bone defects with the F1 protein obtained from latex adsorbed at different concentrations (0,01%, 0,025%, 0,05% e 1%) to two different bonesubstitutes biomaterials, deproteinized bovine bone (DBB) and biphasic calcium phosphate ceramics (pBCP) using a preclinical model in rats. Defects of 8-mm diameter were created in parietal bones of 72 rats filled with the pure biomaterial or carried with the different concentrations of F1 protein, in the microtomographic images a visual analysis of the microtomographic reconstructions of the skull through transverse, coronal and sagittal sections. Subsequently, the segmentation of the defect in the reconstructions will be done through an image processing algorithm to quantify the parameters. Analyzing, in the BP-G group, the total volume of bone (TV), in the CSBD-CG group, the total volume of new bone (TV-NB), and in the treated groups, the total volume of the grafted region (TV/GR), the total volume of new bone (TV-NB) and biomaterials (TV/DBB and TV/pBCP). In tissue sections stained with Hematoxylin and Eosin a descriptive histological analysis was performed to verify the tissue response to treatment with F1 protein and its association with osteoconductive biomaterial and correlate it with the histomorphometric determination to obtain percent values and volume of neoformed bone tissue, biomaterial, bone marrow and soft tissue. In the characterization of DBB and pBCP biomaterials, it was performed through the combined analytical methodology by SEM and SDD-EDS, to analyze external morphology and elemental chemical composition. All the results were compared between the groups by the ANOVA variance analysis and the Tukey tests at the 5% level of significance (Statistica v.5.1, StatSoft). After 12 weeks, defects treated with biomaterials without F1 presented greater bone formation in relation to the control group. The association of 0.025% and 0.05% of F1 plus DBB showed higher bone formation (32.6% and 25.1%, respectively) when compared to pBCP, being 19.3% and 15.1%, respectively. We conclude that the stimulation of angiogenesis and osteogenesis depends on its concentration of F1e and the physicochemical properties of the carrier material. / Uma estratégia da engenharia regenerativa óssea é usar matrizes associadas a moléculas osteogênicas e angiogênicas para aumentar a formação óssea. O objetivo do presente estudo foi avaliar a eficácia do tratamento de defeitos ósseos cranianos extensos com a proteína F1 obtida do látex adsorvido em diferentes concentrações (0,01%, 0,025%, 0,05% e 1%) a dois diferentes biomateriais ósseo-substitutos, osso bovino desproteinizado (DBB) cerâmica de fosfato de cálcio bifásica (pBCP) utilizando um modelo pré-clínico em ratos. Defeitos de 8 mm de diâmetro foram criados nos ossos parietais de 72 ratos preenchidos com o biomaterial puro ou carregados com as diferentes concentrações da proteína F1, nas imagens microtomográficas uma análise visual das reconstruções microtomográficas do crânio através de cortes transversais, coronais e sagitais. Subsequentemente, foi feito segmentação do defeito nas reconstruções através de algoritmo de processamento de imagem para quantificação dos parâmetros. Analisando, no grupo BP-G, o volume total de osso (TV), no grupo CSBD-CG o volume total de osso novo (TV-NB), e nos grupos tratados, o volume total da região enxertada (TV-GR), volume total de osso novo (TV-NB) e biomaterial (TV-DBB e TV-pBCP). Nos cortes teciduais corados pela Hematoxilina e Eosina foi realizado uma análise histológica descritiva para verificar a resposta tecidual frente ao tratamento com a proteína F1 e a sua associação com biomaterial osteocondutor e correlaciona-la com a determinação histomorfométrica para a obtenção dos valores percentuais e de volume de tecido ósseo neoformado, biomaterial, medula óssea e tecido conjuntivo. Na caracterização dos biomaterias DBB e pBCP, foi realizado através da metodologia analítica combinada por SEM e SDD-EDS, para analisar morfologia externa e composição química elementar. Todos os resultados foram comparados entre os grupos pela análise de variância ANOVA e o tests de Tukey ao nível de significância de 5% (Statistica v.5.1, StatSoft). Após 12 semanas, defeitos tratados com biomateriais sem F1 apresentaram maior formação óssea em relação ao grupo controle. A associação de 0,025% e 0,05% de F1 mais DBB mostraram maior formação óssea (32,6% e 25,1%, respectivamente) quando comparados com pBCP, sendo 19,3% e 15,1%, respectivamente.Nós concluímos que, a estimulação da angiogênese e osteogênese depende de sua concentração de F1e das propriedades físico-químicas do material carreador.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-14052019-182956 |
Date | 28 September 2018 |
Creators | Paini, Suelen |
Contributors | Assis, Gerson Francisco de |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | English |
Detected Language | English |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Reter o conteúdo por motivos de patente, publicação e/ou direitos autoriais. |
Page generated in 0.0022 seconds