O presente trabalho tem por finalidade o uso da abordagem bayesiana para a estimativa de parâmetros sazonais dos modelos periódicos auto-regressivos (PAR). Após a determinação dos estimadores bayesianos, estes são comparados com os estimadores de máxima verossimilhança. A previsão para 12 meses é realizada usando os dois estimadores e os resultados comparados por meio de gráficos, tabelas e pelos erros de previsão. Para ilustrar o problema as séries escolhidas foram as séries hidrológicas da Usinas Hidroelétricas de Furnas e Emborcação. Tais séries foram selecionadas tendo em vista a necessidade de previsões com reduzido erro já que o sistema de operação das usinas hidroelétricas depende muito da quantidade de água existente em seus reservatórios e de planejamento e gerenciamento eficazes. / The objective of this research is to use bayesian method to estimate of sazonal parameters of periodic autoregressive models (PAR). The bayesian estimators are then compared with maximum likelihood estimators. The forecast for 12 months is made by using two estimators and comparing their results though graphs, tables and forecast error. The hydrological time series chosen were from Furnas and Emborcação Hydroeletric Power Plant. These series were chosen having in mind the necessity of series with reduced error in their forecast because system of operation in the Hydroeletric Power Plant depends on the quantity of the water in their resevoirs, eficient planning and management.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-06012016-113635 |
Date | 19 March 2003 |
Creators | Gomes, Maria Helena Rodrigues |
Contributors | Chaudhry, Fazal Hussain |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0017 seconds