Return to search

Descending control of responses in the auditory midbrain

[Truncated abstract] The mammalian inner ear is innervated by the efferent olivocochlear system which is divided into medial and lateral systems. In anaesthetised animals, medial olivocochlear (MOC) axons can be electrically stimulated at the floor of the IVth ventricle. MOC stimulation suppresses the spontaneous activity and sound-evoked responses of primary afferents by its actions on outer hair cells. Effects of MOC stimulation have been also reported on responses of neurons in the cochlear nucleus, the first central auditory center receiving cochlear input. However, very little is known about the net results of MOC effects in higher order neurons. This issue was investigated by electrically stimulating MOC axons at the IVth ventricle and recording extracellular single unit activities in the central nucleus of the inferior colliculus (CNIC) of anaesthetised guinea pigs. For the first part of the study, anatomical and neurophysiological studies were carried out to establish that the focal midline MOC stimulation can selectively stimulate MOC axons without any current spread to adjacent ascending fibers. The MOC stimulation and CNIC recordings were then carried out in a series of experiments that included normal hearing animals, animals treated acutely with gentamicin (in which the acetylcholine-mediated peripheral suppression of the olivocochlear efferents is selectively eliminated) and partially deafened animals. ... However, in other CNIC neurons, effects could not be so explained, showing either additional suppression or even marked excitatory effects. (4) MOC stimulation also suppressed the spontaneous activity of CNIC neurons in normal hearing animals. When similar efferent stimulation was carried out in partially deafened animals, the abnormally high spontaneous activity of some CNIC neurons in the deafened frequency regions was also transiently suppressed by MOC shocks. The results from this study clearly demonstrate that the MOC system can modulate the responses of midbrain neurons in a more complex manner compared to the effects seen in the periphery. The more complex effects seen for responses to tones in quiet and in noisy background are likely to result from a complex interplay between altered afferent input in the cochlea and central circuitry. In addition, the ability of MOC efferents in suppressing the normal and abnormal spontaneous activity in the midbrain also could have implications for the role of the descending system in the pathophysiology and treatment of tinnitus.

Identiferoai:union.ndltd.org:ADTP/221420
Date January 2007
CreatorsSeluakumaran, Kumar
PublisherUniversity of Western Australia. School of Biomedical, Biomolecular and Chemical Sciences
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Kumar Seluakumaran, http://www.itpo.uwa.edu.au/UWA-Computer-And-Software-Use-Regulations.html

Page generated in 0.0021 seconds