In this study we present a high-performance computing architecture and hardware acceleration strategy for a heterogeneous multi-gigabit computing system. The system architecture integrates a BeeGFS distributed file system, capable of achieving 80 Gbps of sustained write throughput across five nodes, essential for managing the high data volumes generated by a 25 high performance computer (HPC) compute cluster. To ensure operational efficiency and scalability, the tasks performed on the Linux compute cluster consisting of 30 nodes are automated using Ansible, facilitating seamless deployment, management, and updates. We present compilation strategies for a hardware accelerated Polyphase Filter Bank (PFB) channelization routine optimized for Xilinx Ultrascale+ FPGAs, capable of simultaneously processing 2048 channels per 12 input streams. This setup shows the efficiency of High Level Sysnthesis of FPGA-based signal processing in handling demanding data analysis tasks. We also present the implementation and verification of a 1.6 Gsps Direct Memory Access (DMA) transfer from DDR4 memory to a modern Radio Frequency System on Chip (RFSoC) digital to analog converter. The combination of a high-throughput file system, streamlined automation, and advanced signal processing capabilities shows these system's ability to meet the needs of complex, real-time data analysis and processing applications, advancing the field of computational research.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-11295 |
Date | 12 April 2024 |
Creators | Nybo, Daniel Alexander |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | https://lib.byu.edu/about/copyright/ |
Page generated in 0.0018 seconds