Return to search

GEOMETRIC CONTROL OF INFLATABLE SURFACES

High precision inflatable surfaces were introduced when NASA created the ECHO 1 Balloon in 1960. The experiment proved that inflatable structures were a feasible alternative to their rigid counterparts for high precision applications. Today inflatable structures are being used in aviation and aerospace applications and the benefits of using such structures are being recognized. Inflatable structures used in high precision structures require the inflatable surfaces to have controllable and predictable geometries. Many applications such as solar sails and radar reflectors require the surface of such structures to have a uniform surfaces as such surfaces improve the efficiency of the structure. In the study presented, tests were conducted to determine which combination of factors affect surface flatness on a triangular test article. Factors tested include, three boundary conditions, two force loadings, and two fabric orientations. In total, twelve tests were conducted and results showed that which force loading and fabric orientations used greatly affected the Root Mean Square (RMS) of the surface. It was determined that using the triangular clamp along with 00 fabric orientation and high force loading provided the best results.

Identiferoai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:me_etds-1010
Date01 January 2012
CreatorsScherrer, Isaac John
PublisherUKnowledge
Source SetsUniversity of Kentucky
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations--Mechanical Engineering

Page generated in 0.0016 seconds