We consider the approach to regularity structures introduced by Otto, Sauer, Smith and Weber to obtain a priori bounds for quasi-linear SPDEs. This approach replaces the index set of trees, used in the original constructions of Hairer et. al., by multi-indices describing products of derivatives of the corresponding nonlinearity. The two tasks of this thesis are:
- Construction and estimates of the model. We first provide the construction of a model in the regular, deterministic setting, where negative renormalization can be avoided. We later extend these ideas to the singular case, incorporating BPHZ-renormalization under spectral gap assumptions as a convenient input for an automated proof of the stochastic estimates of the singular model in the full subcritical regime.
- Characterization of the algebraic structures generated by the multi-index
setting. We consider natural actions on functionals of the nonlinearity and build a (pre-)Lie algebra from them. We use this as the starting point of an algebraic path towards the structure group, which as in the regularity structures literature is based on a Hopf algebra. This approach further allows us to explore the relation between multi-indices and trees, which we express through pre-Lie and Hopf algebra morphisms, in certain semi-linear equations.
All the results are based on a series of joint works with Otto, Tempelmayr
and Tsatsoulis.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:80754 |
Date | 23 September 2022 |
Creators | Linares Ballesteros, Pablo |
Contributors | Universität Leipzig |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds