Return to search

Energy Efficient, Cooperative Communication in Low-Power Wireless Networks

The increased interest in massive deployment of wireless sensors and network densification requires more innovation in low-latency communication across multi-hop networks. Moreover, the resource constrained nature of sensor nodes calls for more energy efficient transmission protocols, in order to increase the battery life of said devices. Therefore, it is important to investigate possible technologies that would aid in improving energy efficiency and decreasing latency in wireless sensor networks (WSN) while focusing on application specific requirements. To this end, and based on state of the art Glossy, a low-power WSN flooding protocol, this dissertation introduces two energy efficient, cooperative transmission schemes for low-power communication in WSNs, with the aim of achieving performance gains in energy efficiency, latency and power consumption. These approaches apply several cooperative transmission technologies such as physical layer network coding and transmit beamforming. Moreover, mathematical tools such as convex optimization and game theory are used in order to analytically construct the proposed schemes. Then, system level simulations are performed, where the proposed schemes are evaluated based on different criteria.

First, in order to improve over all latency in the network as well as energy efficiency, MF-Glossy is proposed; a communication scheme that enables the simultaneous flooding of different packets from multiple sources to all nodes in the network. Using a communication-theoretic analysis, upper bounds on the performance of Glossy and MF-Glossy are determined. Further, simulation results show that MF-Glossy has the potential to achieve several-fold improvements in goodput and latency across a wide spectrum of network configurations at lower energy costs and comparable packet reception rates. Hardware implementation challenges are discussed as a step towards harnessing the potential of MF-Glossy in real networks, while focusing on key challenges and possible solutions.

Second, under the assumption of available channel state information (CSI) at all nodes, centralized and distributed beamforming and power control algorithms are proposed and their performance is evaluated. They are compared in terms of energy efficiency to standard Glossy. Numerical simulations demonstrate that a centralized power control scheme can achieve several-fold improvements in energy efficiency over Glossy across a wide spectrum of network configurations at comparable packet reception rates. Furthermore, the more realistic scenario where CSI is not available at transmitting nodes is considered. To battle CSI unavailability, cooperation is introduced on two stages. First, cooperation between receiving and transmitting nodes is proposed for the process of CSI acquisition, where the receivers provide the transmitters with quantized (e.g. imperfect) CSI. Then, cooperation within transmitting nodes is proposed for the process of multi-cast transmit beamforming. In addition to an analytical formulation of the robust multi-cast beamforming problem with imperfect CSI, its performance is evaluated, in terms of energy efficiency, through numerical simulations. It is shown that the level of cooperation, represented by the number of limited feedback bits from receivers to transmitters, greatly impacts energy efficiency. To this end, the optimization problem of finding the optimal number of feedback bits B is formulated, as a programming problem, under QoS constraints of 5% maximum outage. Numerical simulations show that there exists an optimal number of feedback bits that maximizes energy efficiency. Finally, the effect of choosing cooperating transmitters on energy efficiency is studied, where it is shown that an optimum group of cooperating transmit nodes, also known as a transmit coalition, can be formed in order to maximize energy efficiency. The investigated techniques including optimum feedback bits and transmit coalition formation can achieve a 100% increase in energy efficiency when compared to state of the art Glossy under same operation requirements in very dense networks.

In summary, the two main contributions in this dissertation provide insights on the possible performance gains that can be achieved when cooperative technologies are used in low-power wireless networks.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:70930
Date10 June 2020
CreatorsAbdelkader, Abdelrahman
ContributorsJorswieck, Eduard A., di Renzo, Marco, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds