Return to search

Millimeter Wave Line-of-Sight Spatial Multiplexing: Antenna Topology and Signal Processing

Fixed wireless communication is a cost-efficient solution for flexible and rapid front-/backhaul deployments. Technologies including dual polarization, carrier aggregation, and higher order modulation schemes have been developed for enhancing its throughput. In order to better support the massive traffic increment during network evolution, novel wireless backhaul solutions with possible new dimensions in increasing the spectral efficiency are needed. Line-of-Sight (LoS) Multiple-Input-Multiple-Output (MIMO) communication is such a promising candidate allowing the throughput to scale linearly with the deployed antenna pairs. Spatial multiplexing with sub-channels having approximately equal quality exists within a single LoS direction. In addition, operating at millimeter wave (mmWave) frequencies or higher, the abundantly available bandwidth can further enhance the throughput of LoS MIMO communication. The mmWave LoS MIMO communication in this work exploits the spatial multiplexing from the structured phase couplings of a single path direction, while most of the state-of-the-art works in mmWave communication focus on the spatial multiplexing from the spatial signature of multiple path directions.

Challenges: The performance of a LoS MIMO system is highly dependent on the antenna topology. Topologies resulting in theoretically orthogonal channels are considered as optimal arrangements. The general topology solution from a unified viewpoint is unknown. The known optimal arrangements in the literature are rather independently derived and contain restrictions on their array planes. Moreover, operating at mmWave frequencies with wideband signals introduces additional challenges. On one hand, high pathloss is one limiting factor of the received signal power. On the other hand, high symbol rates and relatively high antenna numbers create challenges in signal processing, especially the required complexity for compensating hardware imperfections and applying beamforming.

Targets: In this thesis, we focus on antenna topologies and signal processing schemes to effectively handle the complexity challenge in LoS MIMO communications. Considering the antenna topology, we target a general solution of optimal arrangements on any arbitrarily curved surface. Moreover, we study the antenna topologies with which the system gains more streams and better received signals. Considering the signal processing, we look for low complexity schemes that can effectively compensate the hardware impairments and can cope with a large number of antennas.

Main Contributions: The following models and algorithms are developed for understanding mmWave LoS spatial multiplexing and turning it into practice. First, after analyzing the relation between the phase couplings and the antenna positions in three dimensional space, we derive a channel factorization model for LoS MIMO communication. Based on this, we provide a general topology solution from a projection point of view and show that the resulting spatial multiplexing is robust against moderate displacement errors. In addition, we propose a multi-subarray LoS MIMO system for jointly harvesting the spatial multiplexing and array gains. Then, we propose a novel algorithm for LoS MIMO channel equalization, which is carried out in the reverse order w.r.t. the channel factorization model. The number of multiplications in both digital and analog implementations of the proposed solution is found to increase approximately linearly w.r.t. the number of antennas. The proposed algorithm thus potentially reduces complexity for equalizing the channel during the system expansion with more streams. After this, we focus on algorithms that can effectively estimate and compensate the hardware impairments. A systolic/pipelined processing architecture is proposed in this work to achieve a balance between computational complexity and performance. The proposed architecture is a viable approach that scales well with the number of MIMO streams. With the recorded data from a hardware-in-the-loop demonstrator, it is shown that the proposed algorithms can provide reliable signal estimates at a relatively low complexity level. Finally, a channel model is derived for mmWave systems with multiple widely spaced subarrays and multiple paths. The spatial multiplexing gain from the spatial signature of multiple path directions and the spatial multiplexing gain from the structured phase couplings of a single path direction are found simultaneously at two different levels of the antenna arrangements. Attempting to exploit them jointly, we propose to use an advanced hybrid analog/digital beamforming architecture to efficiently process the signals at reasonable costs and complexity. The proposed system can overcome the low rank property caused by the limited number of propagation paths.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:33198
Date15 February 2019
CreatorsSong, Xiaohang
ContributorsFettweis, Gerhard, Caire, Giuseppe, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation10.1109/TWC.2018.2832084, 10.1109/JSAC.2018.2872286, 10.1109/TWC.2018.2879661, 10.1109/LWC.2015.2424952, 10.1109/ICC.2016.7511627, 10.1109/ICC.2016.7511058, 10.1109/GLOCOM.2015.7417737, 10.1109/ICUWB.2015.7324516, 10.1515/freq-2017-0149

Page generated in 0.0023 seconds