Return to search

Parallelization of Artificial Spiking Neural Networks on the CPU and GPU

Conventional artificial neural networks have traditionally faced inherent problems with efficient parallelization of neuron processing. Recent research has shown how artificial spiking neural networks can, with the introduction of biologically plausible synaptic conduction delays, be fully parallelized regardless of their network topology. This, in conjunction with the influx of fast, massively parallel desktop-level computing hardware leaves the field of efficient, large-scale spiking neural network simulations potentially open to even those with no access to supercomputers or large computing clusters. This thesis aims to show how such a parallelization is possible as well as present a network model that enables it. This model will then be used as a base for implementing a parallel artificial spiking neural network on both the CPU and the GPU and subsequently evaluating some of the challenges involved, the performance and scalability measured and the potential that is exhibited.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ntnu-9838
Date January 2009
CreatorsVekterli, Tor Brede
PublisherNorges teknisk-naturvitenskapelige universitet, Institutt for datateknikk og informasjonsvitenskap, Institutt for datateknikk og informasjonsvitenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0016 seconds