The study and understanding of molecular interactions is fundamentally important in today's field of life sciences and there is a demand for well designed surfaces for biosensor applications. The biosensor has to be able to detect specific molecular interactions, while non-specific binding of other substances to the sensor surface should be kept to a minimum. The objective of this master´s thesis was to design sensor surfaces based on self-assembled monolayers (SAMs) and evaluate their structural characteristics as well as their performance in Biacore systems. By mixing different oligo (ethylene glycol) terminated thiol compounds in the SAMs, the density of functional groups for bimolecular attachment could be controlled. Structural characteristics of the SAMs were studied using Ellipsometry, Contact Angle Goniometry, IRAS and XPS. Surfaces showing promising results were examined further with Surface Plasmon Resonance in Biacore instruments.Mixed SAM surfaces with a tailored degree of functional COOH groups could be prepared. The surfaces showed promising characteristics in terms of stability, immobilization capacity of biomolecules, non-specific binding and kinetic assay performance, while further work needs to be dedicated to the improvement of their storage stability. In conclusion, the SAM based sensor surfaces studied in this thesis are interesting candidates for Biacore applications.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-16664 |
Date | January 2009 |
Creators | Bergström, Anna |
Publisher | Linköpings universitet, Institutionen för fysik, kemi och biologi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds