L’ingénierie tissulaire osseuse a récemment connu de nouveaux développements grâce à la prise en compte du phénomène de mécanotransduction dans la conception des bioréacteurs. Toutefois, des progrès restent à faire sur nos connaissances sur les mécanismes de la réponse des cellules souches mésenchymateuses (CSM) aux contraintes mécaniques en vue d’optimiser l’environnement mécanique tridimensionnel des cellules dans les bioréacteurs. L’objectif de cette thèse est double : déterminer le meilleur microenvironnement mécanique pour des CSM humaines et appliquer cet environnement au sein d’un bioréacteur. Pour cela, des CSM humaines ont été cultivées dans différentes conditions et soumises à des contraintes mécaniques. Leur réponse a été analysée via des marqueurs précoces de l’ostéogénèse. En parallèle, un modèle numérique a été développé pour simuler l’écoulement dans un bioréacteur à scaffold granulaire et déterminer le niveau et la répartition des contraintes ressentis par les cellules. Il a été mis en évidence que la réponse des cellules à une stimulation mécanique dépend très fortement de son environnement tridimensionnel. Ce travail à la fois mécanique et biologique permet de dégager des pistes d’amélioration des bioréacteurs et des scaffolds en vue de l’optimisation de l’environnement mécanique tridimensionnel des cellules en ingénierie tissulaire osseuse. / Bone tissue engineering is currently in full development and a growing field of research. The consideration of the mechanotransduction process is a key factor in the optimization of bioreactors. Mesenchymal stem cells (MSC) used in bone tissue engineering are known to be mechanosensitive but our knowledge of the mechanisms of cell response to mechanical stress needs to be improved. This thesis has a double goal: determining the best possible mechanical microenvironment for human MSC, and apply this environment in a bioreactor. To that aim, human MSC were grown in different conditions and subjected to mechanical stresses. Their response was analyzed through osteogenesis markers. A numerical model was also implemented to simulate the flow in bioreactor with a granular scaffold and evaluate levels and distributions of stresses felt by cells. It was shown that cell response to mechanical stress is strongly dependent on the tridimensional environment. This biological and mechanical study highlights tracks of improvement for bioreactors and scaffolds to optimize the mechanical tridimensional environment of cells in bone tissue engineering.
Identifer | oai:union.ndltd.org:theses.fr/2015ECDL0011 |
Date | 23 June 2015 |
Creators | Cruel, Magali |
Contributors | Ecully, Ecole centrale de Lyon, Hoc, Thierry |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0068 seconds