Return to search

Optical Properties Of Silicon Based Amorphous Thin Films

Silicon based hydrogenated amorphous semiconducting (intrinsic and n/p doped a-Si:H and a-Si1-xCx:H) thin films have been deposited by plasma enhanced chemical vapor deposition (PECVD) system. In order to analyze the optical response of these amorphous films, intrinsic optical absorption mechanisms have resumed and spectral variations of absorption coefficient &amp / #61537 / (E) are derived. The exponential variation of absorption coefficient for energies below the band edge is discussed in the frame of randomly distributed square well like potential fluctuations of localized states. Urbach constant EU and the slope B are deduced as disorder parameters. Both intensity sensitive transmittance and reflectance, and amplitude/phase sensitive ellipsometric techniques for multilayer thin films are theoretically and practically treated. Various methodologies are developed for the determination of thickness, refractive index and absorption coefficient of the films. A reflectance unit is adapted to the spectrometer and all the measuring instruments are computerized and relevant software packets have been developed. IR spectroscopy has been used for determination of mainly hydrogen concentrations and bonding properties. Establishing the production-characterization-improved growth conditions cycle successfully, the following results are obtained: (a) determination of lateral inhomogeneity of films along the radial direction of the plasma reactor, (b) determination of vertical inhomogeneity due to both substrate and air ambient, (c) perfect adjustment of refractive index and band gap of a-Si1-xCx:H films by changing carbon content of the films, (d) effect of plasma power density on both growth and carbon content.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12605492/index.pdf
Date01 September 2004
CreatorsAkaoglu, Baris
ContributorsKatircioglu, Bayram
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypePh.D. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0046 seconds